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Abstract
The modern molecular biology movement was developed in the 1960s with the conglomera-

tion of biology, chemistry, and physics. Today, molecular biology is an integral part of studies

aimed at understanding the evolution and ecology of gastrointestinal microbial communities.

Molecular techniques have led to significant gains in our understanding of the chicken

gastrointestinal microbiome. New advances, primarily in DNA sequencing technologies, have

equipped researchers with the ability to explore these communities at an unprecedented level.

A reinvigorated movement in systems biology offers a renewed promise in obtaining a more

complete understanding of chicken gastrointestinal microbiome dynamics and their contribu-

tions to increasing productivity, food value, security, and safety as well as reducing the public

health impact of raising production animals. Here, we contextualize the contributions

molecular biology has already made to our understanding of the chicken gastrointestinal

microbiome and propose targeted research directions that could further exploit molecular

technologies to improve the economy of the poultry industry.
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Introduction

The gastrointestinal tracts (GITs) of chickens harbor

microbial communities, or microbiomes, that play impor-

tant roles in: growth and development, including the

production of energy-rich short chain fatty acids (SCFA;

Dunkley et al., 2007); promotion of GIT villus and crypt

morphology (Shakouri et al., 2009); nutrient utilization,

including reduction in luminal viscosity (Shakouri et al.,

2009), the deconstruction of dietary polysaccharides

(Beckmann et al., 2006; Qu et al., 2008); nutrient

absorption (Cole and Boyd, 1967); and well-being of

their chicken hosts, including detoxification (Hai et al.,

2010). The chicken GIT is inhabited by various bacteria

(Qu et al., 2008), methanogenic archaea (Saengkerdsub

et al., 2007a, b), fungi (Okulewicz and Zlotorzycka, 1985),

and viruses (Qu et al., 2008). Protists are more sparsely

distributed (Okulewicz and Zlotorzycka, 1985) and are

generally regarded as pathogens. The composition of the

GIT microbiome reflects co-evolution among the inhabit-

ing microbes, genetic, immune, and metabolic interac-

tions with the host, and environmental influences

(Yeoman et al., 2011). Microbes are found across the

entire length of the GIT, where they show spatial

variation in community composition biogeographically

(Fig. 1; Gong et al., 2007) as well as between luminal

and mucosa-associated populations (Gong et al., 2002).*Corresponding author. E-mail: bwhite44@illinois.edu
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Microbial diversity and abundance are most evident in

the ceca (Gong et al., 2007), where more than 2200

operational taxonomic units (OTUs; 95% sequence ID;

Danzeisen et al., 2011) and as many as 3500 genotypes

(Qu et al., 2008) have been predicted. Consistently,

microbial fermentation is most active in this section of

the GIT.

As a result of issues that relate to zoonoses, food

safety, animal nutrition, and health, the composition and

function of the chicken GIT microbiome has received

significant attention from researchers for almost 40 years.

The original study of chicken GIT community composi-

tion by Salanitro et al. (1974) looked at 325 strains isolated

by culture from the cecum of 5-week-old broiler hens.

These strains were reported to represent up to 81%

of the cultivable microbes from the chicken ceca.

However, by the early 1990s it was recognized that the

richness of species in all microbiomes, and indeed the

Earth’s biosphere, had been significantly underestimated

by conventional microbial culturing methodologies

(Amann et al., 1995). In fact, the majority of microbial

species colonizing the chicken GIT have not been

cultivated. More recently, culture-independent methods

have been developed to overcome cultivation biases

and allow more complete and detailed information

on microbial community diversity, composition, and

function.

16S rRNA gene-directed microbiome composition

The use of the 16S rRNA gene as a phylogenetic marker to

study bacterial and archaeal diversity and composition

across various environments has resulted in tremendous

quantities of information about microbial community

dynamics. In particular, the increasing affordability

and capability of second and subsequent-generation

high-throughput sequencing platforms have made it

possible to explore microbiomes at unprecedented

phylogenetic depth. These surveys have uncovered

the fine-grained structure of microbial communities occu-

pying these ecosystems, exposing important features

such as the existence of a rare biosphere, whose low-

abundance populations dominate ecosystem diversity

Fig. 1. Major taxa surveyed along the chicken GIT. Data on taxa and their spatial distribution are taken from Qu et al. (2008),
Saengkerdsub et al. (2007a, b), and Gong et al. (2002). Virus and phage populations are not presented or adequately sampled
and listed cecal colonists are limited to the most common and abundant taxa. Numerous other taxa have been described in the
chicken ceca.
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(Fig. 2; Dethlefsen et al., 2008; Huse et al., 2008;

Turnbaugh et al., 2008). Although outnumbered by an

order of magnitude by bacteriophage (Rodriguez-Valera

et al., 2009), bacteria are the most abundant and diverse

domain of life in the chicken GIT.

Microbial density and diversity are greatest in the

cecum where longer digesta transit times permit more

substantial microbial fermentation (Rehman et al., 2007).

In the cecal pouches, bacteria are present at concentra-

tions of 1010–1011 cells/g cecal material, encoding more

than 95% of the genetic information present (Qu et al.,

2008; Danzeisen et al., 2011). Consistent with other host-

associated microbiomes (Ley et al., 2008), the bacterial

phylum Firmicutes is the predominant phylum in the

chicken crop, gizzard, small intestine, and cecum

(Rehman et al., 2007; Qu et al., 2008; Danzeisen et al.,

2011). Firmicutes represent 50–90% of all taxa in the

cecum (Qu et al., 2008; Danzeisen et al., 2011), while

culture-dependent and -independent approaches indicate

the proportion of Firmicutes (principally in the form of

Lactobacilli) is greater than 90% in other GIT locations

(Gong et al., 2007; Rehman et al., 2007). Archaea are less

abundant, being present at concentrations of 105–107 cells

per gram of cecal material (Saengkerdsub et al., 2007a)

and encoding around 1–2% of the genetic information

present in the ceca (Qu et al., 2008; Danzeisen et al.,

2011). Methanobrevibacter is the predominant archaeal

genus in the chicken ceca, with taxa similar to Methano-

brevibacter woesei being the most prolific of this domain

(Fig. 1; Saengkerdsub et al., 2007a). Other archaeal

taxa exist, and consistent with other GIT environments,

all archaea appear to be involved in the methanogenic

Fig. 2. Maximum likelihood trees of abundant (a) and rare (b) OTUs. Trees are built from sequence data generated by Qu et al.
(2008) for Chick1 (Panel A) and Chick94 (Panel B) with detailed taxonomic assignments. Unclassified refers to a taxonomic
classification of less than 70% confidence by RDP at Order. Taxonomic clades are shaded according to a shared taxonomic
designation. The number of sequence tags in each of the OTUs in the modal biosphere is given in parentheses following their
taxonomic classification.
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dissipation of hydrogen produced during fermentation

(Saengkerdsub et al., 2007a, b).

Analyses of rarefaction curves and diversity indexes

indicate that microbial richness and diversity increase

with age (Danzeisen et al., 2011). In the work by

Danzeisen et al. (2011), OTUs (95% sequence ID)

corresponding to Roseburia, Coprococcus, Butyricoccus,

Papillibacter (all Firmicutes), and Escherichia (Proteo-

bacteria) were found to be abundant constituents of

the chicken ceca, but were not detected before 14 days

of age, while other OTUs classified as Fastidiospila,

Hespellia, Lactobacillus, and Coprococcus (all Firmicutes)

were not detected before 35 days of age. Methanobacter-

iales were detected in the fecal samples of 25% of

chickens as early as 3 days of age and found in 100%

of chickens tested from 5 days of age (Saengkerdsub

et al., 2007b).

Although 16S rRNA gene surveys provide taxonomic

information, they fail to provide information related to

microbial function. While these can be uncovered for

isolated microbes in culture using a variety of directed-

assays, metagenomic, metatranscriptomic, and metabolo-

mic analyses offer the ability to understand these

physiological roles for individual species (including those

that have not yet been cultured), in situ, and in the

context of the entire microbiome.

Shotgun metagenomic analyses

Gene-based metagenomic surveys provide a measure

of the metabolic capabilities of a microbiome. To date,

two shotgun metagenomic surveys have been

performed in chickens, both focusing on the ceca. The

first, performed by Qu et al. (2008) determined the

distribution of �200,000 genes present in healthy chick-

ens and in chickens experimentally infected with

Campylobacter jejuni. In the second, Danzeisen et al.

(2011) looked at differences in genes between control

chickens and those fed sub-therapeutic levels of anti-

biotics for growth enhancement. These studies uncovered

a large amount of information relating to the prevalence

of mobile elements, and genes involved in nutrition,

virulence, and antibiotic resistance, which will be

discussed below. They also provide an unbiased look at

the diversity and distribution of all types of microbes,

including bacteria, archaea, viruses, and eukaryotic

microbes.

To date, no studies have integrated the global gene

expression patterns or metabolite profiles from the

chicken GIT to a metagenomic backbone. Therefore,

currently our knowledge is limited to the metabolic

potential of the chicken GIT microbiome. Several studies

have investigated the transcriptional dynamics of micro-

bial isolates of the chicken GIT, including comparisons

of in vitro and in vivo grown Salmonella enterica

serovar Enteritidis PT4 and Salmonella enteric serovar

Typhimurium (Dhawi et al., 2011; Harvey et al., 2011),

respectively. These studies revealed significant metabolic

differences between in vitro and in vivo grown cells, as

well as striking differences in the expression of important

virulence factors (Dhawi et al., 2011; Harvey et al., 2011).

One of the studies (Harvey et al., 2011) also revealed

significant differences in the growth rate and motility of

Salmonella Typhimurium. These studies highlight the

stark contrasts between evidence obtained at the labora-

tory bench and the functional reality of microbes

occupying GIT environments, arguing strongly for a

systems biology understanding. Even these experiments

are one step removed from biological reality as they

were performed in gnotobiotic hatchlings; it will there-

fore be interesting to determine the significance of these

findings in situ alongside fully developed microbial

ecosystems.

This is not an argument for a complete switch to

meta-omic techniques. These techniques provide the

opportunity to survey the system-wide dynamics of a

microbiome, but meta-omic techniques need to be

integrated with genomic and transcriptomic infor-

mation from isolated organisms so they are correctly

interpreted and contextualized, leading to a more

complete understanding of the ecology and evolution of

the microbiome.

Genomic analyses of microbes isolated from
the chicken GIT

Most genome-sequencing projects focusing on chicken

isolates have been directed toward pathogenic viruses

(e.g. Barbosa et al., 2007; Linde et al., 2010; Qiu et al.,

2011; Abro et al., 2012; Diel et al., 2012). Those projects

focusing on autonomous microbial life forms have almost

universally targeted zoonotic or host pathogens (Johnson

et al., 2007; Ahir et al., 2011), including GIT isolates

(Pearson et al., 2007; Thomson et al., 2008; Cooper et al.,

2011; Feng et al., 2012) or opportunistic pathogens

(Johnson et al., 2011). A handful of bacteria have been

isolated and sequenced from the chicken GIT without a

clear zoonotic link, including Bacteroides salanitronis

BL78, Lactobacillus crispatus ST1 and Lactobacillus

salivarius NIAS840. The B. salanitronis and Lactobaillus

genomes were all reported in the past few years and

describe bacteria of potential importance to GIT health

(Ojala et al., 2010; Gronow et al., 2011; Ham et al., 2011).

In addition to bacterial and viral genomes (Thomson

et al., 2008), genome-sequencing efforts have also

successfully targeted a Siphoviridae-family bacteriophage,

SPN3UB (Lee et al., 2012) and a Podoviridae-family

phage, FCPV1 (Volozhantsev et al., 2011). Bacteriophage

SPN3UB was isolated from chicken feces (Lee et al.,

2012), while FCPV1 was isolated from chicken intes-

tinal contents. These phages are infectious to

important zoonotic pathogens and are being explored

92 C.J. Yeoman et al.



as alternatives to antibiotics for the control of

Salmonella Typhimurium and Clostridium perfringens,

respectively.

Although the molecular interrogation of the

chicken GIT microbiome is only in its adolescence, its

contributions to our understanding of growth, health,

and development of the chicken host have been sig-

nificant, and may lead to new methods for the

mitigation of zoonotic diseases that use chickens as a

vector.

The chicken GIT microbiome’s role in host nutrition

The chicken GIT microbiome produces enzymes enabling

the deconstruction of dietary polysaccharides (Beckmann

et al., 2006). These enzymes are critical to host nutrition

because chickens, like most animals, lack the genes for

glycoside hydrolase (GH), polysaccharide lyase (PL), and

carbohydrate esterase (CE) enzymes that are necessary

to facilitate this process (Morris, 2003). Metagenomic

analyses have illustrated the significance of the cecal

microbiome’s contribution to carbohydrate metabolism.

Genes encoding GHs, PLs, CEs, and other proteins

involved in carbohydrate metabolism (transporters and

those involved in central carbohydrate metabolism) have

been shown to be more abundant than any other category

of gene in this environment (�20% of genes; Qu et al.,

2008; Danzeisen et al., 2011).

During the deconstruction of dietary polysaccharides,

GIT bacteria produce SCFAs (Topping and Clifton, 2001;

Dunkley et al., 2007). The composition and proportions

of these SCFAs vary depending on microbial composition,

which is to some degree adaptable, and fine-tuned by the

composition and structure of the fiber component of the

chicken’s diet (Topping and Clifton, 2001). Acetate is the

primary SCFA produced in most GIT environments,

including the chicken, followed by propionate and

butyrate (Topping and Clifton, 2001; Dunkley et al.,

2007). Other SCFAs such as valerate, isobutyrate, and

isovalerate are also produced in trace amounts (Dunkley

et al., 2007). Concentrations of butyrate are of particular

physiological significance, as this SCFA is the primary

energy source of colonic epithelia and has been shown to

be essential to homeostasis of colonocytes and develop-

ment of GIT villus morphology (Panda et al., 2009;

Donohoe et al., 2011). The three major SCFAs (acetate,

propionate, and butyrate) all appear important to colonic

musculature and vasculature in the GIT (Topping and

Clifton, 2001). These SCFAs are also of critical importance

to host energetics and hydration. SCFAs stimulate fluid

and electrolyte uptake and are absorbed transepithelially

as a source of energy that contributes between 10%

(humans) and up to 70% (ruminants) of the host’s daily

energy requirements (McNeil, 1984; Topping and Clifton,

2001; Flint and Bayer, 2008). Although their exact

contribution in chickens has yet to be determined, the

SCFA butyrate has been shown to improve growth

performance and carcass quality characteristics in chick-

ens (Panda et al., 2009).

The GIT microbiome also contributes to nitrogen

metabolism. Genes involved in the metabolism of protein

(9–10% of genes), amino acids (8–9%), and nitrogen

(1%) have all been shown to be abundant (Qu et al., 2008;

Danzeisen et al., 2011). The relative proportions of

genes dedicated to the metabolism of these three

nitrogen sources are consistent with protein being the

major source of nitrogen and depicting the major

direction of nitrogen flux (protein – amino acids –

nitrogenous compounds) in the GIT. The microbial

metabolism of dietary protein that escaped host metabo-

lism earlier in the GIT provides further amino acids for

egg production, maintenance, and growth (Latshaw and

Zhao, 2011). However, subsequent metabolic processing

to ammonia or urea is of no nutritive value to the

host and approximately half of the available dietary

nitrogen is excreted, mostly as ammonia in chickens

(Latshaw and Zhao, 2011). This hyper-production of

ammonia and subsequent excretion is not only nutrition-

ally inefficient but also underpins negative effects on

performance, health, and mortality in poultry houses, and

is a major environmental and public health concern

(McCubbin et al., 2002; Xin et al., 2011).

Genes dedicated to fatty acid and lipid metabolism

are also detected (1–2%; Qu et al., 2008), suggesting

microbial modulation of lipid profiles as has been

described in other livestock (Dhiman et al., 2005).

Conjugated linoleic acid (CLA) is one of the best-studied

microbially produced fatty acid and is produced by

certain microbes as an intermediate during the biohy-

drogenation of the polyunsaturated linoleic acid (Palm-

quist et al., 2005). CLA has been found to naturally occur

in chicken meat (Dhiman et al., 2005). Dietary supple-

mentation of CLA has been shown to increase lean body

mass in chickens and to be incorporated into tissue lipids

(Simon et al., 2000). It should also be noted, however,

that dietary CLA also appears to affect yolk quality and

embryo mortality in laying hens by altering yolk fatty acid

composition and albumen and yolk pH, a feature that can

be overcome by the co-supplementation of olive oil

(Aydin et al., 2001).

The incorporation of a molecular understanding of

the microbiome with nutritional science therefore paves

the way for new research that should seek to optimize the

composition of the chicken GIT microbiome. Such

research could provide new opportunities to enhance

SCFA production, reduce nitrogen losses or optimize fatty

acid profiles (which may vary between broiler and laying

hens). Such benefits could lead to significant improve-

ments in poultry production and the associated econom-

ics. SCFA and CLA production also have been linked

to host health (Badinga and Greene, 2006; Wong et al.,

2006) and may provide additional benefit in reducing

disease.
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The role of the chicken GIT microbiome in reducing
pathogen loads

For over 100 years chickens have been recognized as an

important source of zoonotic infection (Higgins, 1898), a

feature that has long plagued the poultry industry. This

may be exacerbated by less active innate and humoral

immune systems in chickens that are permissive to

colonization by pathogenic bacteria such as species

of Salmonella and Campylobacter (Toth and Siegel,

1986; Jeurissen et al., 1998) and numerous host-specific

or host-promiscuous viruses. Metagenomic analyses have

shown us that genes associated with virulence are

abundant within the chicken microbiome (�8% of all

genes; Qu et al., 2008;Danzeisen et al., 2011). Thesemostly

include genes for antibiotic resistance (>55% of virulence-

related genes), and iron scavenging (13%), but also include

genes involved in types III and IV secretion (>2%),

adhesion (>1%), invasion and intracellular resistance (1%;

Qu et al., 2008), lipid A biosynthesis (not quantified), and

type I pilus formation (not quantified; Danzeisen et al.,

2011). Many of these virulence genes, including those

involved in type IV secretion, type I pilus formation, lipid A

biosynthesis, and iron scavenging were found to represent

a significantly larger portion of the total genes identified in

chickens subjected to various sub-therapeutic antibiotic

treatments (STAT; Danzeisen et al., 2011).

The composition of the chicken GIT maintains a

fine balance; disruptions to key species can enable the

dramatic proliferation of pathogenic microbes (Kimura

et al., 1976; Morishita and Mitsuoka, 1976) and dramatic

increases in the proportion of virulence genes (Danzeisen

et al., 2011). Conversely, a stable and healthy GIT

microbiome can limit the colonization of zoonotic

pathogens, such as Salmonella (Hudault et al., 1985) and

Campylobacter species (Soerjadi-Liem et al., 1984) as well

as transform clinically significant fungal mycotoxins

periodically found in feed to non-toxic derivatives

(Hai et al., 2010). Although Enterococcus faecium and

some Lactobacillus isolates have been suggested to limit

the colonizing potential of some major pathogens

through direct competitive interactions (Jin et al., 1996;

Carina Audisio et al. 2000), relative exclusion is strongly

correlated to increasing species complexity (Hudault

et al., 1985; Fukata et al., 1991; Schoeni and Wong,

1994). The pre-establishment of the microbiome prior to

infection is an important precursor of resistance (Hudault

et al., 1985), perhaps relating to the order and complexity

of epithelial adherence. It is therefore clear that main-

taining chicken GIT health is one key to limiting pathogen

loads and increasing food safety in the poultry industry.

Microbial diversity in the chicken GIT is sensitive to a

number of perturbing agents, including parasitic infection

with Ascaridia galli (Okulewicz and Zlotorzycka 1985) or

protozoal infection with Eimeria tanella (Kimura et al.,

1976), as well as human interventions such as the

provision of antibiotics (Danzeisen et al., 2011).

Antibiotics are used therapeutically to treat disease in

humans and domestic animals. In the late 1940s, it was

recognized that sub-therapeutic levels of antibiotics

(STAT) could be used to expedite and enhance the

growth of chickens (Stokstad and Jukes, 1950) and other

livestock (Gustafson and Bowen, 1997). The serendipitous

finding came from chickens fed fermentation waste from

cyclotetracycline production as an inexpensive source

of vitamin B12 (Stokstad and Jukes 1950). In addition, STAT

was recognized as a tool to reduce pathogen loads and

decrease the risks of zoonotic transmission (Gustafson

and Bowen, 1997). The mechanisms that link STATs to

animal productivity have not been established but because

of their growth promoting activity STATs became widely

used in production facilities. Today STATs are still used in

the USA and several other countries around the world as

they have been for more than 50 years (Collignon et al.,

2009; Chapman et al., 2010).

Molecular methods have established that STATs act

non-specifically affecting a broad range of microbial taxa.

Monensin in combination with either virginiamycin or

tylosin has been shown to significantly decrease bacteria

of the major phylum Firmicutes, including Roseburia,

Enterococcus, Lactobacillus and Blautia, and increase

Proteobacteria such as Escherichia and Ruminococcaceae

such as Anaerotruncus, Subdoligranulum, and Sedimen-

tibacter (Danzeisen et al., 2011).

In the 1960s, it was suggested that STATs could lead to

proliferation of the pool of antibiotic resistance genes and

allow their transfer to human pathogens (Swann, 1969).

Evidence suggests a number of pathogens can colonize

both the human and chicken GIT (Johnson et al., 2008,

2009; Gipp et al., 2011), providing opportunities for gene

exchange. Gene-directed metagenomic surveys have

provided clear evidence that microbes colonizing the

chicken GIT are an abundant source of antibiotic

resistance genes (Qu et al., 2008; Zhou et al., 2012). Most

prolific are genes encoding resistances to fluoroquino-

lones, tetracyclines, cobalt, zinc, cadmium, and common

antibiotics used in poultry production (Qu et al., 2008;

Danzeisen et al., 2011). Methicillin (Qu et al., 2008) and

beta-lactam (Qu et al., 2008; Danzeisen et al., 2011)

resistance genes are also common. This abundance of

antibiotic resistance genes has been contrasted with the

near absence of these genes in animals with no historical

exposure to antibiotics and minimal interactions with

humans or other animals from areas where antibiotics are

frequently used (Thaller et al., 2010). However, certain

antibiotic resistances are ancient properties of microbes

(D’Costa et al., 2011). Genes encoding ampicillin and

spectinomycin resistance have been detected in free-

range chickens not routinely subjected to STATs (Zhou

et al. 2012), though in the same study antibiotic-resistance

genes were found to be almost four times more prevalent

in conventionally raised (STAT-treated) chickens

(Zhou et al. 2012). Danzeisen et al. (2011) found that

antibiotic resistance genes were not enriched by
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controlled short-term STAT application. This could

suggest that the low dosages of STATs have limited

bactericidal action and therefore elicit a limited selection

pressure, but may also reflect the long-term adaptation of

the chicken GIT microbiome to STAT use.

Perhaps the most disturbing aspect of this abundance

of antibiotic resistance genes in the chicken ceca is that

they are co-occurring in an environment that also has a

high abundance of mobile DNA elements, as detected in

shotgun metagenomic surveys (Qu et al., 2008; Danzeisen

et al., 2011). The genome sequences of chicken isolates

Salmonella Enteritidis P125109 and Salmonella enterica

serovar Gallinarum 287/91 carry potentially mobile

genomic islands (Thomson et al., 2008). Plasmids carrying

virulence genes have been observed in potentially

zoonotic Escherichia coli strains of chicken origin

(Johnson et al., 2008). Even the avirulent L. salivarius

NIAS840 and B. salanitronis Bl78 isolates carry three

plasmids each (Gronow et al., 2011; Ham et al., 2011). A

quick survey of the gene contents of these plasmids

shows the largest of the B. salanitronis plasmids,

pBACSA01, encodes apparatus necessary for conjugative

and type IV DNA transfer, while all three B. salanitronis

plasmids carry genes for mobilization, indicating that all

three B. salanitronis plasmids could be moved between

bacterial hosts. Mobile elements have different host

ranges but are well described for their ability to move

among very disparate microbial hosts. Staphylococcus

aureus’ recent adaptation to the chicken GIT (during

the STAT era) included the acquisition of novel mobile

genetic elements (Lowder et al., 2009). Although anti-

biotic resistance genes were largely absent from plasmids

that pre-date the antibiotic era (Hughes and Datta, 1983),

they are commonplace among today’s GIT microbes

(Schultsz and Geerlings, 2012). These genes are func-

tional across multiple host species as exemplified by

Zhou et al. (2012), who demonstrated that antibiotic-

resistance genes identified from a metagenomic clone

library could be introduced into a strain of C. jejuni and

be functionally active. Therefore mobile elements may

provide a vehicle permitting the transfer of genes that

facilitate antibiotic resistance and virulence to initially

antibiotic-sensitive, avirulent microbes, potentially includ-

ing those of clinical importance (Gyles, 2008). Consis-

tently, surveys have demonstrated erythromycin

resistance is prevalent in C. jejuni strains (Ladely et al.,

2007) and multiple antibiotic resistances and virulence

traits are prevalent in strains of E. coli (Johnson et al.

2008; Glenn et al., 2012) isolated from STAT chickens.

A quick catalogue of the antimicrobial resistance

genes present in the genomes of chicken GIT isolates

S. Gallinarum 287/91 and S. Enteritidis P125109 shows

these organisms each carry an impressive arsenal of genes

potentially enabling increased resistance to multiple

antimicrobials (Table 1). Even the avirulent chicken

isolate B. salanitronis DSM1870 carries an assortment of

antibiotic resistance genes, perhaps chronicling a strong

anthropogenically imposed selection pressure of this

environment.

Collectively, these studies clearly illustrate a mechanism

through which the history of STAT use could have

contributed to the proliferation of microbial antibiotic

resistances. This is further supported by a number of

indirect pieces of evidence. Yet, conclusive evidence has

for a long time been lacking in this argument. Recent

work in pigs has provided much clearer evidence that

zoonotic transfer between humans and STAT-treated

animals can lead to microbes obtaining antibiotic

resistances (Price et al., 2012). Although the area remains

contentious, legislative steps are already in place to

illuminate STAT use in USA farming practices. A mechan-

istic understanding of STAT-mediated growth promotion

could lead to the identification of new and more broadly

accepted agents to facilitate this process. Optimizing GIT

microbial communities through microbiome-directed

nutrition or probiotics could provide new opportunities

to limit pathogen colonization. Further research into

alternatives to antibiotics that are target-specific, such as

lytic phages could attenuate the transmission of zoonotic

pathogens without negatively impacting production.

Conclusions

Molecular interrogation of the chicken GIT microbiome

has given us a new level of understanding of its

composition and spatial structure. Surveys of phyloge-

netic markers such as the 16S rRNA gene have allowed

researchers to overcome the roadblocks associated with

culture-based surveys. In tandem with modern sequen-

cing technologies, these surveys have also allowed us to

describe more than the most abundant few organisms.

Gene-directed metagenomic surveys have described the

functional content of the microbiome illustrating its

contribution to host nutrition. These surveys, along with

microbial genomic analyses, have also provided clearer

evidence of the abundance of antimicrobial and patho-

genicity traits circulating in the chicken GIT. The

prevalence of mobile elements further raises concerns

about the role of poultry in exacerbating the virulence

and resistance of zoonotic human pathogens. Transcrip-

tional analyses have shown the disparity between in vitro

and in vivo experimentation, and the deployment of

metatranscriptomics is needed to place this information in

an in situ and physiologically relevant context. The field

of GIT microbiology is moving toward an integrated

systems level understanding. Early meta-omic analyses

have enabled those with an interest in the chicken GIT to

also venture down this road. An improved and integrated

understanding of the role of nutrition and the microbiome

in mitigating disease and promoting animal growth and

productivity may lead next-generation farming practices

to a level that exceeds that currently achieved through

STAT provision.
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Table 1. Antimicrobial resistance genes in the genomes of some chicken GIT isolates

Antimicrobial
resistance genes

S. enterica serovar
Gallinarum 287/911

S. enterica serovar
Enteritidis P1251091

B. salanitronis
DSM18701

Anti-metabolites
SulfonamidesS SG2259

Cell wall synthesis inhibitors
Beta-lactamsC SG1598

Ampicillin SG2643
GlycopeptidesC

Bleomycin Bacsa_0310, Bacsa_2931
Vancomycin SEN2177

FosfomycinsC SG1968

Membrane function inhibitors
PolymyxinsC SG2328, SG2333 SEN2286
PolypeptidesC

Bacitracin SG3101 SEN3047 Bacsa_2304

Nucleic acid synthesis inhibitors
QuinolonesC SG1598
FluoroquinolonesC

Norfloxacin SG1956
Enoxacin SG1956
Novobiocin SG2158, SG2159,

SG2160
Protein synthesis inhibitors
AminonucleosidesC

Puromycin SG2209
AminoglycosidesC SG1860, SG4014 SEN1788

Gentamicin SG4014
Streptomycin SG3991
Spectinomycin SG4016

MLSK2,S

Clindamycin Bacsa_3730, Bacsa_3731
Erythromycin SG4004

PhenocolsS

Chloramphenicol SG1598, SG3587
PolyketidesS

Tetracycline SG1598, SG2643 Bacsa_2536, Bacsa_2537,
Bacsa_2540

Other
Fosmidomycin SG0504 SEN0474

Topical antiseptics
Acriflavine SG0485, SG0486,

SG3281
SEN0456, SEN0457,
SEN3224, SEN3225

Bacsa_1319, Bacsa_1327,
Bacsa_1328, Bacsa_1649,
Bacsa_1670, Bacsa_1893,
Bacsa_1951

Other
Bicyclomycin SG2259 SEN2214 Bacsa_2484
Camphor SG0634 Bacsa_0754
Cetylpyridinium SG4181
Heavy metal SG0985, SG3360,

SG3434, SG4166
Bacsa_1320, Bacsa_1422,
Bacsa_1876

Melittin SEN2283
Methyl viologen SG1553 SEN1481
Multi-resistance SG1598, SG2194,

SG2209, SG2604,
SG2722, SG3634

SEN1531, SEN1532,
SEN1533, SEN1566,
SEN1567, SEN2659,
SEN2660, SEN3615

Bacsa_0099, Bacsa_0761,
Bacsa_1555, Bacsa_1650,
Bacsa_1950, Bacsa_2048,
Bacsa_2660, Bacsa_2031,
Bacsa_3272, Bacsa_3722

Nitroimidazole SG0696 SEN0663 Bacsa_3112
Tellurite SG1514, SG1515 SEN1447, SEN1448 Bacsa_0256
Tiamulin SG3999

1Locus tags of genes in this genome potentially increasing resistance to antimicrobial; 2Macrolides, Lincosamides,
Streptogramins, Ketolides; CBactericidal; SBacteriostatic.
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Batholomäus P, Hofreuter D, Woltemate S, Uhr M,
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