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Universal fluctuations and extreme statistics of avalanches near the depinning transition
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We derive exact predictions for universal scaling exponents and scaling functions associated with the statistics
of maximum velocities vm during avalanches described by the mean-field theory of the interface depinning
transition. In particular, we find a robust power-law regime in the statistics of maximum events that can explain
the observed distribution of the peak amplitudes in acoustic emission experiments of crystal plasticity. Our
results are expected to be broadly applicable to a broad range of systems in the mean-field interface depinning
universality class, ranging from magnets to earthquakes.
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I. INTRODUCTION

The depinning transition of a slowly driven elastic interface
in systems with quenched disorder is recognized as one
of the paradigms of nonequilibrium critical phenomena. As
the driving field is slowly increased and fine-tuned to a
critical value, the elastic interface undergoes a transition
from a pinned state to a moving regime. Near this pinning-
depinning transition, the motion of the interface proceeds
in spatiotemporal avalanches with scale-invariant statistics.
Avalanches are observed in a variety of dynamical systems,
including the Barkhausen noise in soft magnetic materials
[1,2], the charge density wave depinning [3,4], the motion
of vortices in superconductors [5], the seismic activity in
earthquakes [6], the acoustic emission in mesoscopic crystal
plasticity [7], and fracture propagation [8]. Although these
systems are very different in microscopic detail, the large-scale
statistical properties of their avalanche fluctuations appear
to be universally captured by the mean-field theory of the
depinning transition [4,6,9–12].

An avalanche is a burst of forward motion described by
a velocity profile v(x,t), where x labels a point along the
interface. The motion begins from rest (v = 0) at time t = 0
and ends when the system comes to rest again for the first time,
at time T . An elastic interface driven at a slow constant rate
through a disordered medium proceeds forward in a series of
avalanches with durations that are distributed according to a
power law P (T ) ∼ T −α in the limit of weak elastic coupling
and infinite system size [9]. Another power-law-distributed
quantity of interest is the global avalanche size, given by S =

1
Ld

∫ T

0

∫
v(x,t)ddxdt , which is the total forward motion of the

interface center of mass or, in the domain wall picture, the total
change in magnetization during the avalanche [1,10,13]. Here
we will focus on another quantity: the maximum collective
velocity during an avalanche vm = max0�t�T

1
Ld

∫
v(x,t)ddx.

Several acoustic emission (AE) experiments on small-scale
plastic deformations of single crystals, e.g., ice, Cd, Zn, and
Cu, report robust power-law scaling in the statistics of the
maximum amplitude Am of acoustic waves emitted during
plastic slip avalanches. The probability distribution density
of the maximum AE amplitude follows a power-law tail
P (Am) ∼ A

−μ
m , with an exponent μ ≈ 2 [7,14–18]. Since

many slip avalanches are required to obtain good statistics

for P (Am), the deviations in the values of μ could depend
on the experimental resolution. Nevertheless, the exponent is
remarkably robust to variations such as loading mode, type
of crystal, temperature, forest hardening effect, or plastic
anisotropy [16–18]. Under certain conditions, it is argued that
the maximum amplitude Am is a measure of the area swept
by the fast-moving dislocations [14,15]. The same power-law
exponent for the maximum velocity distribution has been
observed using high-resolution extensometry [17].

The picture that emerges from the AE experiments is that
crystal deformations due to the intermittent motion of disloca-
tions are characterized by seismic events analogous to those in
the dynamics of plate tectonics. Crystal plasticity as a critical
phenomenon has also been confirmed by other experimental
techniques such as high-resolution extensometry [17] and
compression of nanopillars and micropillars [19,20], as well
as by numerical simulations of discrete dislocation dynamics
[7,21–23]. Moreover, the statistics of slip avalanches, i.e., the
avalanche size and duration distributions as well as the power
spectrum, seem to agree remarkably well with the mean-field
theory of interface depinning [23–26].

Recently, in Ref. [27] we derived the value of the exponent
μ from a mean-field theory of the depinning transition. In
this paper we present the calculations that led to this result in
more detail and extend the results to include the effect of a
nonzero driving rate and cutoff scaling functions. Although
motivated by experiments on crystal plasticity, our results
are expected to be broadly applicable to other systems that
fall in the mean-field interface depinning universality class,
such as earthquakes and Barkhausen noise in soft magnets. In
Table I we give a summary of the predictions of the mean-field
theory, including our new results for the maximum velocity.
The predictions we quote cater to both Barkhausen noise
and plasticity experiments (but see the caveats at the end of
Sec. VI), the latter in both steady-state and stress-controlled
situations (see the caption to Table I).

Some of the distributions that we derive in this paper
are relevant to the field of extreme value statistics (EVS),
which is of importance to many statistical systems, from
natural disasters, e.g. floods [30], earthquakes [31], and snow
avalanches [32], to financial crises [33] and social reactions
to extreme events [34]. Most of these natural systems have
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TABLE I. Summary of the mean-field theory (MFT) exponents and scaling relationships for avalanche statistics in slowly driven (the
driving rate c̃ → 0) interfaces near depinning. The first four lines give the power law and cutoff exponents for the size S, duration T , maximum
velocity vm, and maximum energy Em ≡ v2

m observables. The script letters denote universal scaling functions. The first three distributions are
shown exactly in Eqs. (73), (72), and (78) and the fourth follows from a simple change of variables. The parameter k gives the distance to
criticality for the system; in Barkhausen noise experiments, it represents the demagnetizing field, while in steady-state plasticity scenarios
(including earthquakes) it is proportional to the stiffness of the coupling between the system and the driving. In the stress-controlled situation, k
can be replaced by Fc − F, where F is the external stress and Fc is the critical stress, and the exponent predictions will remain the same. Lines
5–8 give stress-integrated exponents and the exponents are the expected outcome of plasticity experiments where the external force or stress is
increased gradually until failure and avalanches occur along the way. Lines 9–13 give how the size, maximum velocity, and maximum energy
of an avalanche scale with its duration and then how the maximum velocity and energy scale with the size. The first is well known [1,13,28,29]
and the last four can be obtained by taking the averages of Eqs. (54) and (66).

Quantitiy Form MFT values

avalanche size distribution P (S) ∼ S−τF(k1/σ S) τ = 3
2 , σ = 1

2

duration distribution P (T ) ∼ T −αG(kνzT ) α = 2, νz = 1

maximum velocity distribution P (vm) ∼ v−μ
m H(kρvm) μ = 2, ρ = 1

maximum energy (Em ≡ v2
m) distribution P (Em) ∼ E−(μ/2+1/2)

m H(kρE1/2
m ) μ

2 + 1
2 = 3

2 , 2ρ = 2

stress-integrated size distribution Pint(S) ∼ S−(τ+σ ) τ + σ = 2

stress-integrated duration distribution Pint(T ) ∼ T −(α+1/νz) α + 1
νz

= 3

stress-integrated maximum velocity distribution Pint(vm) ∼ v−(μ+1/ρ)
m μ + 1

ρ
= 3

stress-integrated maximum energy (Em ≡ v2
m) distribution Pint(Em) ∼ E−[(μ+1/ρ)]/2+1/2]

m
1
2 (μ + 1

ρ
) + 1

2 = 2

average size vs duration 〈S|T 〉 ∼ T 1/σνz σνz = 1
2

average maximum velocity vs duration 〈vm|T 〉 ∼ T ρ/νz ρ

νz
= α−1

μ−1 = 1

average maximum energy (Em ≡ v2
m) vs duration 〈Em|T 〉 ∼ T 2ρ/νz 2 ρ

νz
= 2 α−1

μ−1 = 2

average maximum velocity vs size 〈vm|S〉 ∼ Sσρ σρ = τ−1
μ−1 = 1

2

average maximum energy (Em ≡ v2
m) vs size 〈Em|S〉 ∼ S2σρ 2σρ = 2 τ−1

μ−1 = 1

a complex evolution characterized by catastrophic, extreme
events that appear at intermittent intervals and have a large
impact on the long-term behavior of the systems [35]. In
physics, determining the likelihood of these rare events is
important to a variety of problems. For example, the low-
temperature thermodynamics of spin glasses is governed by
the statistics of low-energy states [36]; the velocity of traveling
fronts is selected by the extreme value for a wide class
of initial conditions similar to random bisections that occur
during fragmentation processes [37]; the level density of a
noninteracting Bose gas has an asymptotic behavior governed
by the three limit laws of classical EVS [38] due to a deeper
connection between the sum of correlated random variables
and extreme values [39]; much recent progress on EVS in
systems with strong correlation has been achieved in the
context of Gaussian height fluctuations of kinetically growing
interfaces [40–44]; extreme statistics applies to the largest or
smallest eigenvalue of random matrices, also corresponding
to the extreme positions occupied in a Coulomb gas with
logarithmic interactions [45].

Classical extreme value statistics applies to independent,
identically distributed random variables {xi}Ni=1 with the parent
distribution p(x). Under these assumptions, the distribution
that the extremum (here taken as the maximum) is less than
a given value m, namely, C(m) = Prob(max1�i�N xi < m),
approaches in the limit of N → ∞ one of the three types of
asymptotic laws depending on the tail of p(x): (i) when p(x)
decays faster than any power law and is unbounded, e.g., a
Gaussian or an exponential function, the EVS is governed
by the Fisher-Tippett distribution C(m) ∼ exp[exp(−m)];

(ii) when p(x) decays as a power law p(x) ∼ x−α , with α > 0,
the extreme value distribution approaches the Fréchet limit
function C(m) ∼ exp(−m−α); (iii) the Weibull distribution
function C(m) ∼ exp[−(−m)α], with α > 0, determines the
EVS class for the random variables that are distributed on
a bounded interval. Although a general theory of extreme
value statistics for arbitrary correlations and parent distribution
p(x) has yet to emerge, substantial progress has been made
in several cases where the EVS is exactly solvable for
correlated variables. For instance, Berman’s theorem says
that the EVS of a weakly correlated Gaussian process is
also governed by the Fisher-Tippett distribution [46,47]. This
corresponds to a power spectrum density that decays with
the frequency as Sf ∼ f −a , with an exponent 0 � a � 1.
Indeed, the EVS of time records with long-term persistence of
Gaussian distributed fluctuations with a < 1 converges to the
Fisher-Tippett distribution [48]. The same asymptotic law also
determines the distribution of maximum heights of periodic,
Gaussian 1/f noise [43,49], where the maximum is measured
relative to the mean.

In contrast, the extreme value statistics of a correlated
Gaussian process with a > 1 typically has a simple scaling
form with the duration, with a scaling function strongly
dependent on several parameters, such as the boundary
conditions, the value from which the extremum is measured,
as well as other ordering constraints on the time evolution
[42,43]. For example, different scaling functions are obtained
for the maximum heights of periodic Gaussian interfaces: If
the maximum is measured relative to the spatially averaged
height, the corresponding EVS is determined by the so-called
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Airy distribution function [41–44], whereas measuring
the maximum relative to the boundary value leads to
the Rayleigh distribution [50,51]. We will discuss the extreme
value distribution for an avalanche in a mean-field theory
of interface depinning known as the Alessandro-Beatrice-
Bertotti-Montorsi (ABBM) model [52] and show that this
avalanche signal can be viewed as a sequence of strongly
correlated, nonidentically distributed, non-Gaussian variables.
The probability distribution function (PDF) of the maximum
velocity inside avalanches of fixed duration T follows a
universal scaling form P (vm|T ) = (2vmT )−1/2F (

√
2vm/T ),

with a scaling function F (x) that can be derived exactly by
a mapping to an equivalent problem of random excursions of
Brownian motion in a logarithmic potential.

This paper is structured as follows. In Sec. II we review
the ABBM model of interface depinning and derive it from a
discrete mean-field theory. Then in Sec. III we outline our
methods and use them to demonstrate a derivation of the
velocity distribution at a given time in an avalanche of a
given duration. We also comment on the relationship between
the Ito and Stratonovich interpretations of the square-root
multiplicative noise in the model, in particular why they both
predict the same parabolic shape for the average velocity as
a function of time inside an avalanche. Following that, in
Secs. IV and V we use methods similar to those of Sec. III
to derive the distributions of peak velocities for avalanches of
given durations and sizes. The main results for fixed durations
at the critical point have been reported recently in Ref. [27].
Here we present the details of the calculations and extend the
work to also include the effects of nonzero sweep rate c and the
maximum velocity statistics for fixed avalanche size. Finally,
in Sec. VI we derive the peak velocity distribution integrated
over all avalanches, as well exact scaling functions describing
the tails of size and duration distributions. Concluding remarks
and a summary are provided in Sec. VII.

II. THE ABBM MODEL

Mean-field avalanches in the motion of interfaces near
depinning have been extensively studied in the realm of the
ABBM model, which was proposed by Alessandro et al. in
Refs. [52]. The model was initially derived to mimic the
dynamics of a single domain wall in soft magnets exhibiting
Barkhausen noise, but has become a standard model for
interface depinning in the presence of long-range forces
[1,10,29,53]. The dynamics of a single interface propagating
across a disordered material results from a competition
between internal elasticity of the interface, interactions with
the quenched disorder experienced by the moving front, and an
external driving field that is increased at a constant rate. In the
mean-field approximation, the motion of the center-of-mass
position of the interface u(t) = 1

Ld

∫
u(x,t)ddx is given as

du

dt
= k

(
c

k
t − u

)
+ F (u), (1)

where c/k is the constant pulling rate, k is an elastic coupling
to the driving force, and the effective pinning force F (u) is
assumed to be Brownian correlated in u, i.e., 〈F (u)〉 = 0 and

〈|F (u) − F (u′)|2〉 = 2D|u − u′|. (2)

It is important to note that this does not imply long-range cor-
relations of disorder in the medium. In fact, under a physically
sensible short-range disorder correlator 〈F (x,u)F (x ′,u′)〉 ∼
δ(x − x ′)�(u − u′), where �(u) is peaked at the origin, the
effective correlations in the total pinning force F ({u(x)}) =∫

F (x,u(x))ddx in the center of mass coordinate u are long
ranged because different pieces of the interface move forward
at different times and the smaller the fraction that moves, the
less the total pinning force changes [1].

The evolution of the average velocity of the interface,
defined as v = du/dt , can be obtained by differentiating
Eq. (1) with respect to u. Thus

dṽ

du
= −k + c

ṽ
+ w(u), (3)

where ṽ(u) ≡ v(t) and w(u) = dF/du, so that

〈w(u)w(u′)〉 = 2Dδ(u − u′). (4)

Equation (3) can be interpreted as the motion ṽ(u) of a
Brownian particle in a logarithmic potential Ũ (u) = ku −
c ln(u). We will assume that the motion obeys v(x,t) � 0 at
all times, so that u(t) is monotonic and we can choose to study
the system’s evolution in either u or t . By multiplying with
du/dt on both sides in Eq. (3), the evolution in time can then
be written as

dv

dt
= −kv + c + √

vη(t), (5)

where the multiplicative noise η(t) ≡ √
ṽw is Gaussian, has

zero mean, obeys

〈η(t)η(t ′)〉 = 2Dδ(t − t ′), (6)

and is interpreted in the Ito sense. The interpretation can be
verified by demanding that Eq. (5) predict the correct steady
state distribution [52]

P (v,t → ∞) ∝ v−1+c/D exp(−kv/D), (7)

which can also be derived from Eq. (3) [1].
Incidentally, we notice that Eq. (5) is identical to the

equation satisfied by interest rates in the Cox-Ingersoll-Ross
bond pricing model [54]. A similar

√
v-multiplicative noise

process also appears in reaction-diffusion systems driven
by internal noise [55]. The dynamics of this process is
characterized by power-law statistics of avalanche sizes and
durations and long-range temporal correlations with a power
spectrum S(f ) ∼ f −a, where f is the frequency and a > 1.

An avalanche of duration T corresponds to an excursion of
v(t), which is a path that starts and ends with v(0) = v(T ) =
0 with v(t) > 0 for 0 < t < T . We study the statistics of
avalanche durations and velocities conditioned on durations
from Eq. (5). Alternatively, the avalanche size distributions
as well as the velocity statistics conditioned on avalanche
sizes can be studied from Eq. (3). In this parametrization, an
avalanche of size S = ∫ T

0 v(t)dt corresponds to an excursion
of ṽ(u) along the coordinate u (integrated velocity). This
corresponds to a path that starts and ends at ṽ(0) = ṽ(S) = 0
with ṽ(u) > 0 for 0 < u < S.
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A. Other formulations of the mean-field theory

This mean-field theory has two other equivalent construc-
tions that provide useful physical pictures. The first uses
integer time t = jδt and velocity variables and is a Markov
process where the number of cells nt+1 that fall at time step
t + 1 is drawn from a Poisson distribution

P (nj+1|nj ) = ρ(nj )nj+1

nj+1!
e−ρ(nj ), (8)

where ρ(nt ) = 〈nt+1〉. This rule can be derived from the
following picture (see, e.g., Refs. [6,56]): We first divide the
interface into N cells of equal volume that are coupled to one
another with a mean-field coupling (infinite range) and also
each coupled to a driving force that pulls the interface at an
average velocity va . This means that the total local stress on
the ith cell is given by

τi = (J/N)
N∑

j �=i

(uj − ui) + K(vat − ui), (9)

where J is the elastic coupling between the cells, K is the
coupling to the driving point, and the ui are the positions of
the cells along the direction of motion.

The dynamics is that a cell slips forward by an amount δui

as soon as its local stress is above a threshold τs,i . This raises
the stress on every other cell by an amount δτj = (J/N )δui

and decreases cell i’s stress by an amount |δτi | = (J + K)δui.

Assuming that the stress drops δτi and failure stresses τs,i ,
are distributed very narrowly around the values δτ and τs ,
respectively, each cell’s stress will be approximately confined
to the interval [τs − δτ,τs]. Then each cell that did not slip at
a given time step will experience a stress increase of

�τt = nt

J δτ

N (J + K)
+ Kvaδt, (10)

where nt is the number of cells that slipped at time t and δt

is the duration of a time step. If we further assume that the
stresses of the cells that did not slip at time t are uniformly
distributed within [τs,i − δτ,τs,i], the cells that fall at time
t + δt will be the ones with stresses greater than τs,i − �τt .

This means that each cell has a �τt/δτ chance of slipping at
the next time step t + δt and that the average number of cells
that slip is

〈nt+δt 〉 = N
�τt

δτ
= ntJ

(J + K)
+ NKvaδt

δτ
. (11)

Writing the average number of cells that slip per time step
in terms of the pulling velocity as na = vaNδt/δu and
rearranging gives

ρ(nt ) = 〈nt+δt 〉 = Jnt + Kna

J + K
, (12)

which has 〈nt+δt 〉 = 〈nt 〉 = na as a steady state average. Since
we expect an average of ρ(nt ) cells to slip in the next time
period, nt+δt is Poisson distributed as in Eq. (8).

As also pointed out in Ref. [53], an update rule such as
Eq. (8) derived in the shell model of the random field Ising
model [57] is equivalent to the ABBM model in the continuum
limit. This follows from the Gaussian approximation to the

Poisson update rule, which is valid for large ρ(nt ) and is
given by

nt+δt = ρ(nt ) +
√

ρ(nt )ηt , (13)

where ηt is a univariate Gaussian random variable with zero
mean. Assuming that K/J is small and that terms multiplied
by it can be neglected in the fluctuation term when ρ(nt ) is
large, we have

nt+δt − nt ≈ −K

J
(nt − na) + √

ntηt . (14)

The number of cells that slip during a time step is related to
the instantaneous center-of-mass velocity by vt = ntδu/Nδt,

so, multiplying through by the conversion factor and taking
the continuum limit in time δt → 0, we arrive at the ABBM
equation

v̇(t) = k

(
c

k
− v(t)

)
+

√
2Dv(t)ξ (t), (15)

where k ≡ K
Jδt

, c ≡ kva, η(t) = ηt/
√

δt, and 2D ≡ δu
Nδt2 .

The form of the discrete time equation shows that the Ito
interpretation is correct. Therefore, this model is equivalent
to the ABBM model at large velocities. Notice also that for
K = 0, the continuum limit of the discrete model’s steady
state equation

P (n) =
∑
n′

P (n|n′)P (n′) ≈
∫

dn′ (n
′)ne−n′

n!
P (n′) (16)

is satisfied by the ansatz P (n) = n−1, which agrees with the
c,k → 0 limit of Eq. (7).

The ABBM model is also the continuum limit of a point
process in which the dynamics proceeds in discrete jumps
with random waiting times τj = tj − tj−1 in between that
are power-law distributed (see, e.g., Ref. [58] and references
therein). In particular, the discrete process that leads to Eq. (5)
at the critical point has P (τj ) ∼ τ−2

j .

For a stationary Poisson process with a constant mean λ,
the waiting time distribution is P (τ ) = λe−λτ , whereas for a
modulated Poisson process with λ a stochastic variable with a
probability distribution P (λ), it is

P (τ ) =
∫ ∞

0
λe−λτP (λ)dλ. (17)

The steady state probability of the jumps is P (n) ∼ n−1, so
P (λ) ∼ λ−1, which in turn implies that P (τ ) ∼ τ−1 in the
continuum. This is consistent with the rule P (τj ) ∼ τ−2

j in the
discrete case since the probability of a random time being in a
waiting interval of duration τ is proportional to τ. Since Eq. (5)
can be derived as the continuum limit of a sequence of discrete
pulses, the Ito interpretation is again seen to be appropriate.

B. Numerics

In numerical simulations, we use a Euler-Maruyama
method to integrate Eq. (5) with D = 1/2. This scheme,
however, does not preserve the positivity constraint of the
solution. Nonetheless, since we are interested in avalanches,
i.e., the evolution in between zero crossings, we discard the
times when the velocities become negative. An avalanche is
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started from v = 1 and evolved until v � 0 at which time it is
declared over and recorded. Then a new avalanche is restarted
from v = 1 with a different realization of the noise. Since
the noise is uncorrelated, this closely resembles the reflecting
boundary condition at v = 0 in the steady state evolution of the
model. This method is simple and fast, but the disadvantage
is that the crude integration rule and boundary conditions
introduce inaccuracies for small avalanches (T 
 103, S 

106). Another method tried was directly implementing Eq. (8),
which obtained results consistent with the first method for k =
c = 0, with a somewhat faster convergence to the continuum
limit seen in the scaling functions.

III. VELOCITY STATISTICS FOR AVALANCHES OF
FIXED DURATION

With the change of variable x = 2
√

v and Ito’s lemma,
Eq. (5) can be transformed into an additive noise equation

dx

dt
= −k

2
x + 2c − D

x
+ ξ (t). (18)

The problem is thus mapped to an overdamped Brownian
motion of a particle confined to the right half plane in
a potential V (x) = 1

2kx2 − (2c − D) ln(x). Near criticality,
k → 0 and the problem reduces to Brownian motion in a
logarithmic trap. For an initial condition x(0) = 0, the particle
may execute an excursion with x(t) > 0 for a duration T

until its position returns to the origin for the first time. This
excursion corresponds to an avalanche in the v(t) during
the interface propagation. In the following, we calculate
the distribution of the instantaneous displacement during an
excursion of size T , namely, P (x,t |T ), and, by a corresponding
transformation of variables, the conditional distribution of
velocities in avalanches of fixed durations P (v,t |T ). This
allows us to determine the avalanche shape.

Following a standard path-integral method, the probability
distribution for the process defined by Eq. (18) can be written
as a path integral

P (x,t) ∝
∫

Dy(τ )δ(x − y(t))

×
〈
δ

(
dy

dt
+ dV (y(t)

dy
− ξ (t)

)〉
ξ

, (19)

where V (x) is as above and the noise average is performed with
respect to the Gaussian distribution Pξ ∝ exp[− 1

4D

∫
ξ (t)2dt]

that produces, e.g., Eq. (6). Following Ref. [38], we demand
that the path is an excursion of duration T by fixing the end
points x(0) = x(T ) = ε, where ε is some small value, later
taken to zero. Also, by applying the positivity constraint that
x(t) > 0 for 0 < t < T , we have that

P (x,t |T )

= lim
ε→0

1

Zε(T )

∫ y(T )=ε

y(0)=ε

Dy(τ )exp

(
−

∫ T

0
dτLE(y,ẏ)

)

× δ(y(t) − x)
∏

0�τ�T


(y(τ )). (20)

The noise average has been performed, resulting in the
Lagrangian LE(x,dx/dt) = 1

4D
[dx/dt + dV (x)/dx]2 and

the product of Theta functions enforces the positivity

constraint. The normalization factor integrates over all
excursions regardless if they go through x at time t and is
therefore given by

Zε(T ) =
∫ x(T )=ε

x(0)=ε

Dx(τ )exp

(
−

∫ T

0
dτLE(x,ẋ)

)

×
∏

0�τ�T


(x(τ )). (21)

The equivalent real-time Lagrangian, obtained by transforming
the imaginary-time coordinate t to τ = −it and factoring
out a −1, is L(x,ẋ) = − 1

4D
[−iẋ + V ′(x)]2, where ẋ = dx

dτ

and V ′(x) = dV
dx

. The canonical momentum corresponding
to L(x,ẋ) is then p = ∂L

∂ẋ
= i

2D
[−iẋ + V ′(x)] and the

real time Hamiltonian Ĥ = pẋ − L = Dp2 − ipV ′(x).
Therefore, the evolution of the Brownian particle in a
potential V (x) can be determined from its quantum analog
that satisfies i∂τψ = Ĥψ . Replacing p = −i∂x and τ = −it ,
the probability P (x,t) that the Brownian particle is at position
x at time t satisfies the Fokker-Planck equation

∂P

∂t
= ∂

∂x
[V ′(x)P ] + D

∂2P

∂x2
, (22)

which must be solved with an absorbing boundary condition
at the origin P (0,t) = 0 in order to enforce the positivity
constraint. For k = 0, Eq. (22) reduces to

∂P

∂t
= ∂

∂x

(
D − 2c

x
P

)
+ D

∂2P

∂x2
, (23)

which can be solved exactly.
By a generic separation of variables P (x,t) = e−Etf (x),

Eq. (23) is reduced to the eigenvalue problem

d2f

dx2
+ 1 − 2c̃

x

df

dx
+

(
E

D
− 1 − 2c̃

x2

)
f = 0, (24)

where c̃ = c/D. This is a modified version of the Bessel
equation and the particular solution that is well behaved at
the origin is

f (x) = xc̃J1−c̃

(√
E

D
x

)
, (25)

where J1−c̃(x) is the Bessel function of the first kind [59].
We have assumed 0 � c̃ < 1 since this is the range in which
the model exhibits avalanche behavior [otherwise the origin is
inaccessible in the steady state, as can be seen in Eq. (7)]. We
can now proceed to calculate the P (x,t). For this we interpret
the above path integrals as a matrix element between two
functions defined on [0,∞) given by

〈h|e−Ĥ1(t−t0)|g〉w =
∫ ∞

0
h(x)e−Ĥ1(t−t0)g(x)dx, (26)

where the Hamiltonian is Ĥ1 = −D∂2
x − ∂xV

′
1(x) with

the potential V1(x) = −(2c − D) ln(x) and an absorbing
boundary condition at x = 0. We write the eigenfunctions
fk(x) = xc̃J1−c̃(kx) with the eigenvalues defined as Ek =
Dk2. Using the inverse Hankel transform of g(x)x−c̃ =∫ ∞

0 kdkJ1−c̃(kx)g̃1−c̃(k), the above expression becomes
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equivalent to

〈h|e−Ĥ1(t−t0)|g〉w =
∫ ∞

0
dxh(x)

∫ ∞

0
kdke−Dk2(t−t0)xc̃

× J1−c̃(kx)g̃1−c̃(k), (27)

where g̃1−c̃(k) = ∫ ∞
0 J1−c̃(kx)g(x)x1−c̃dx.

Hence the probability of being at position x and time t

during an excursion of duration T , P (x,t |T ), can be defined
using the matrix elements as

P (x,t |T ) = lim
ε→0

〈ε|e−Ĥ1(T −t)|x〉w〈x|e−Ĥ1t |ε〉w
〈ε|e−Ĥ1T |ε〉w

, (28)

where 〈ε|e−Ĥ1T |ε〉w = Zε(T ). Thus, from Eq. (27) with
h(x) = δ(x − z) and g(x) = δ(x − ε), we have

〈z|e−Ĥ1t |ε〉w =
∫ ∞

0
dxδ(x − z)

∫ ∞

0
kdkxc̃J1−c̃(kx)e−Dk2t

×
∫ ∞

0
y1−c̃dyJ1−c̃(ky)δ(y − ε)

= ε1−c̃zc̃

∫ ∞

0
kdke−Dk2t J1−c̃(kε)J1−c̃(kz) (29)

and in the limit of ε 
 1 the above expression can be expanded
to leading order

〈z|e−Ĥ1t |ε〉w ≈ ε2(1−c̃)zc̃

21−c̃�(2 − c̃)

∫ ∞

0
e−Dk2t J1−c̃(kz)k2−c̃dk

≈
(

ε

2

)2(1−c̃)
z(Dt)−2+c̃

2�(2 − c̃)
e−z2/4Dt , (30)

where �(z) is the Gamma function.
In a similar way, we obtain the other transition amplitude,

to the leading order in ε, as

〈ε|e−Ĥ1(T −t)|z〉w
≈ εz1−c̃

21−c̃�(2 − c̃)

∫ ∞

0
e−Dk2(T −t)J1−c̃(kz)k2−c̃dk

≈
(

z

2

)2(1−c̃)
ε[D(T − t)]−2+c̃

2�(2 − c̃)
e−z2/4D(T −t). (31)

The normalization constant Zε(T ) can also be determined with
h(x) = δ(x − ε) and g(x) = δ(x − ε) and is given by

Zε(T ) = ε

∫ ∞

0
[J1−c̃(kε)]2e−Dk2T kdk

= ε

2DT
I1−c̃

(
ε2

2DT

)
e−ε2/2DT

≈ (ε/2)3−2c̃

(DT )2−c̃�(2 − c̃)
, (32)

where I1−c̃(x) is the modified Bessel function of the first
kind and c̃ < 2 [59]. Combining these final expressions with
Eq. (28), we arrive at

P (x,t |T ) = (x/2)3−2c̃

�(2−c̃)

(
T

Dt(T −t)

)2−c̃

exp

(
− x2T

4Dt(T −t)

)
.

(33)

Finally, the distribution of velocities at a given time t inside
an avalanche of duration T follows by a change of variable
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t)
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>
/T
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FIG. 1. (Color online) Numerical results for the instantaneous
velocity v(t) at time t averaged over many avalanches of duration T

and rescaled to collapse to the form of Eq. (34) with n = 1. Results
for three different values of the dimensionless driving rate c̃ = c/D

are shown. (In the numerics, the driving rate c is varied while the
fluctuation strength is fixed at D = 1/2.) The parabolic shapes with
c̃-dependent height predicted by Eq. (35) for n = 1 match well with
the numerics.

v = x2/4 and is given as

P (v,t |T ) = v1−c̃

�(2−c̃)

(
T

Dt(T −t)

)2−c̃

exp

(
− vT

Dt(T −t)

)
.

(34)

From Eq. (34), we determine the profile of the nth moments
to be

〈vn(t)|T 〉 = �(n + 2 − c̃)

�(2 − c̃)

(
Dt(T − t)

T

)n

, (35)

with n = 1 corresponding to the avalanche shape 〈v(t)|T 〉
(see Fig. 1). We notice that the avalanche shape and higher
moment profiles are independent of the driving rate c̃ up to a
nonuniversal prefactor. We have also verified this numerically
as shown in Fig. 1.

This method of obtaining Eq. (34) has the advantage of
being more intuitive due to the correspondence with excursions
and we will find that this method continues to be very useful
when we compute the statistics of avalanche maxima below.
However, Eq. (34) can also be obtained from the exact solutions
to the untransformed k �= 0 Fokker-Planck equation [52]

∂tP = D∂2
v (vP ) + ∂v[(kv − c)P ], (36)

which were obtained by Feller [60]. The exact propagator with
an absorbing boundary condition at v = 0 is given by

P (v,t,v0,0) =
⎛
⎝ k

D
exp

( − k
D

(v+v0e
−kt )

1−exp(−kt)

)
1 − e−kt

⎞
⎠

×
(

v

v0e−kt

)(c̃−1)/2

I1−c̃

(
2k

√
v0vekt

D(ekt − 1)

)
,

(37)
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assuming that 0 < c̃ < 1. Repeating the steps above gives

P (v,t |T ) = v1−c̃

�(2 − c̃)

(
k
D

(1 − e−kT )

(1 − e−kt )(1 − e−k(T −t))

)2−c̃

× exp

(
−

k
D

v(1 − e−kT )

(1 − e−kt )(1 − e−k(T −t))

)
(38)

and

〈vn(t)|T 〉 = �(n + 2 − c̃)

�(2 − c̃)

×
(

D(1 − e−kt )(1 − e−k(T −t))

k(1 − e−kT )

)n

, (39)

which reduce to Eqs. (34) and (35) when k → 0.

Interestingly, the same avalanche shape is obtained when
Eq. (5) is interpreted in the Stratonovich sense, as derived in
Ref. [53]. In this interpretation, the x = 2

√
v transformation

of the equation of motion is

dx

dt
= −k

2
x + 2c

x
+ ξ (t), (40)

which is a free Brownian motion in the limit k = c = 0. Using
the same method as above, the conditional distribution of
velocities in avalanches of duration T is (assuming k = 0)

PStrat(v,t |T ) = v1/2−c̃

�(3/2 − c̃)

(
T

Dt(T − t)

)3/2−c̃

e−vT /Dt(T −t)

(41)

and the nth moments are

〈vn(t)|T 〉Strat = �(n + 3/2 − c̃)

�(3/2 − c̃)

(
Dt(T − t)

T

)n

, (42)

which is indeed identical to the results from the Ito case up to a
nonuniversal, constant pre-factor. In Ref. [53] it is conjectured
that the Stratonovich interpretation would give the same results
as the Ito interpretation for all universal quantities, but this is
not the case. Notice that Eq. (40) can be transformed into
Eq. (18) by a simple parameter shift c → c − D/2. Therefore,
any quantity that has c dependence will be different in the
two interpretations. This includes the avalanche size scaling
exponent τ and the duration scaling exponent α, which have
the values τ = (3 − c̃)/2 and α = 2 − c̃ (see Refs. [1,29]
and below). The Stratonovich interpretation predictions for
these exponents are then τS = 5/4 − c̃/2 and αS = 3/2 − c̃.

The fact that the Stratonovich interpretation gives the same
parabolic avalanche shapes and higher moment profiles is only
a reflection of the fact that those quantities do not depend on
the driving rate c (except in an overall prefactor).

IV. MAXIMUM VELOCITY STATISTICS FOR
AVALANCHES OF FIXED DURATION

We now determine the extreme value distribution of the
maximum velocity inside avalanches of fixed duration T for
k = 0 and nonzero c. Using the mapping to the random
excursions, we first determine the statistics of the maximal
displacements in excursions over a fixed interval. Let us
consider an excursion {x(t)}t in the time interval 0 � t � T .

The probability distribution at a fixed time t is given by
P (x,t |T ) from Eq. (33), which can be written

P (x,t |T ) = 1

σt

QRE

(
x

2σt

)
, (43)

with QRE(y) = y3−2c̃e−y2
/�(2 − c̃) and σt =√

Dt(T − t)/T . Notice that because σt is different for
every point inside the excursion, it follows that the variables
x(t) are not identically distributed. Furthermore, the individual
distributions are non-Gaussian for small x, but converge
to a Gaussian right tail for large enough x. The maximum
displacement in an excursion is defined as

M = max
0�t�T

x(t), (44)

with a probability distribution determined from the properties
of P (x,t |T ). This follows from the fact that the probability
of the maximum being less than a certain value M < xm is
the same as the probability that at every instant during the
excursion the displacement x(t) is less than xm. The path
integral representing this cumulative probability is

Cε(xm|T ) = 1

Zε(T )

∫ x(T )=ε

x(0)=ε

Dx(t)exp

(
−

∫ T

0
LE(x,ẋ)dt

)

×
∏

0�t�T


(x(t))
(xm − x(t)), (45)

where LE(x,ẋ) = 1
4D

[ẋ + (D − 2c)/x]2 and the product over
the Heaviside functions selects the excursion paths that satisfy
the constraint that the position at any time is less than xm. The
normalization constant Zε(T ), corresponding to the path
integral over all excursions, was calculated previously in
Eq. (32). At the end of the calculation we take the limit
as ε → 0 so that the path starts and ends at the origin,
staying between 0 and xm during an avalanche of duration
T . In contrast, Cε(xm|T ) is also the probability that M < xm,
namely,

Cε(xm|T ) =
∫ xm

−∞
dMPε(M|T ), (46)

thus the PDF Pε(xm|T ) follows directly by a differentiation of
Cε(xm|T ) with respect to xm.

Using the quantum analog, the path integral in Eq. (45) is
equal to a transition amplitude between the position eigenstate
|ε〉 and itself and thus can be computed by an expansion in
energy eigenfunctions

Cε(xm|T ) = 〈ε|e−Ĥ1T |ε〉b
〈ε|e−Ĥ1T |ε〉w

, (47)

with

〈ε|e−Ĥ1T |ε〉b =
∫ xm

0
dxδ(x − ε)e−Ĥ1T δ(x − ε), (48)

where the Hamiltonian Ĥ1 has square-well (box) boundary
conditions at x = 0 and xm. With these boundary conditions,
the Hamiltonian has a discrete spectrum of eigenfunctions
given by

fn(x) = xc̃J1−c̃

(
λnx

xm

)
, (49)

022126-7



LEBLANC, ANGHELUTA, DAHMEN, AND GOLDENFELD PHYSICAL REVIEW E 87, 022126 (2013)

with eigenvalues En = Dλ2
n/x

2
m, where λn is the nth zero of

the Bessel function J1−c̃(x). The δ function in Eq. (48) can be
expanded in this basis as

δ(x − ε) = 2ε1−c̃

x2
m

∑
n

J1−c̃

(
λnε

xm

)
[J2−c̃(λn)]2

fn(x), (50)

with fn(x) defined in Eq. (49). Inserting this expansion into
the definition of the matrix element from Eq. (48), we obtain

〈ε|e−Ĥ1T |ε〉b = 2ε

∞∑
n=1

[
J1−c̃

(
λnε

xm

)
xmJ2−c̃(λn)

]2

e−Dλ2
nT /x2

m . (51)

Finally, inserting the solution of Zε(T ) from Eq. (32) into
Eq. (47) and taking the limit of ε → 0, we arrive at the
expression for the extreme value statistics of the random
displacements C(xm|T ) = limε→0 Cε(xm|T ), namely,

C(xm|T ) = 2c̃(DT )2−c̃

�(2 − c̃)x4−2c̃
m

∞∑
n=1

λ2(1−c̃)
n

[J2(λn)]2
e−λ2

nDT /x2
m . (52)

The distribution P (xm|T ) of the maximum displacements
follows from the cumulative distribution as P (xm|T ) =
∂xm

C(xm|T ). The corresponding PDF of the maximal
avalanche velocities is obtained by the change of variable
xm = 2

√
vm and the transformation

P (vm|T ) = P (xm|T )

∣∣∣∣dvm

dxm

∣∣∣∣
−1

. (53)

It follows that the PDF P (vm|T ) is given by

P (vm|T ) = 1√
2DvmT

F

(√
2vm

DT

)
(54)

with the scaling function given by

F (x) = 2c̃

�(2 − c̃)

1

x5−2c̃

∞∑
n=1

λ2−2c̃
n

[J2−c̃(λn)]2

(
λ2

n

x2
− (4 − 2c̃)

)

× e−λ2
n/2x2

. (55)

We have numerically verified Eq. (54) for different values of
c̃ and k = 0. Our collapsed distributions as shown in Fig. 2 are
in excellent agreement with the analytically predicted scaling
function from Eq. (55).

V. MAXIMUM VELOCITY STATISTICS FOR
AVALANCHES OF FIXED SIZE

Using the same technique as in the preceding section, we
determine the distribution of maximum events in avalanches of
a given size. Here we consider Eq. (3) with c = 0 and nonzero
k, which corresponds to a biased Brownian motion

dṽ

du
= −k + w(u), (56)

where 〈w(u)w(u′)〉 = 2Dδ(u − u′).
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FIG. 2. (Color online) Scaling collapses of numerical results of
P (vm|T ), the distribution of maximum velocities for avalanches of
duration T , onto the form given by Eq. (54) performed for several
values of the dimensionless driving rate c̃ = c/D. (In the numerics,
the driving rate c is varied while the fluctuation strength is fixed
at D = 1/2.) The corresponding scaling functions F (x) given by
Eq. (55) fit very well with the numerics.

The cumulative distribution C(vm|S) conditioned on fixed
avalanche sizes is defined by the path integral

Cε(vm|S)

= 1

Zε(S)

∫ ṽ(S)=ε

ṽ(0)=ε

Dṽ(u)exp

(
− 1

4D

∫ S

0
[ ˙̃v(u) + k]2du

)

×
∏

0�u�S


(ṽ(u))
(vm − ṽ(u)), (57)

where the normalization factor is the path integral over the
unconstrained excursions

Zε(S) =
∫ ṽ(S)=ε

ṽ(0)=ε

Dṽ(u)exp

(
− 1

4D

∫ S

0
[ ˙̃v(u) + k]2du

)

×
∏

0�u�S


(ṽ(u)). (58)

Instead of duration T as in the previous calculation, the value
of u at the end of an avalanche is the slip size of the avalanche
S = ∫ T

0 v(t)dt . The path integral in Eq. (58) is equivalent to
the transition amplitude between the position eigenstate |ε〉
and itself and thus can be computed by an expansion in energy
eigenfunctions

Zε(S) = 〈ε|e−Ĥ2S |ε〉w, (59)

where Ĥ2 = −D∂2
ṽ − k∂ṽ with an absorbing boundary con-

dition at ṽ = 0. The eigenfunctions for this Hamiltonian are

fq(ṽ) =
√

2

π
sin(qṽ)e−kṽ/2D, (60)
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with eigenvalues satisfying Eq = D[(k/2D)2 + q2] for 0 <

q < ∞. Therefore, the Zε(S) from Eq. (59) becomes

Zε(S) =
∫ ∞

0
dṽδ(ṽ − ε)e−Ĥ2Sδ(ṽ − ε). (61)

We expand the δ function in terms of the eigenfunc-
tions as δ(ṽ − ε) = √

2/π
∫ ∞

0 dqg(q)e−kṽ/2D sin(qṽ), where
g(q) = √

2/π
∫ ∞

0 dṽekṽ/2Dδ(ṽ − ε) sin(qṽ). Applying this to
the second δ function and Taylor expanding in the lowest order
of ε, we arrive at

Zε(S) = 2

π

∫ ∞

0
dq sin2(qε)exp

{
−D

[(
k

2D

)2

+ q2

]
S

}

≈
√

2

π

ε2

(2DS)3/2
e−(1/4D)k2S. (62)

Similarly, the numerator path integral in Eq. (57) is determined
by expanding in the discrete set of eigenfunctions of the
Hamiltonian Ĥ2 with square-well boundary conditions at
ṽ = 0 and ṽ = vm. The eigenfunctions are

fn(ṽ) =
√

2

vm

sin2

(
nπṽ

vm

)
e−kṽ/2D, (63)

with the eigenvalues En = D[n2π2/v2
m + (k/2D)2]. There-

fore, we obtain that

Cε(vm|S) = 1

Zε(S)

2

vm

∞∑
i=1

sin2

(
nπε

vm

)

× exp

{
−DS

[
n2π2

v2
m

+
(

k

2D

)2
]}

, (64)

which, in the limit of ε → 0, leads to

C(vm|S) =
√

2π (2DS)3/2

vm

∞∑
n=1

(
nπ

vm

)2

× exp

(
−π2n2DS

v2
m

)
. (65)

Interestingly, k has canceled completely out of the final answer.
Differentiating with respect to vm in Eq. (65), we obtain the

PDF for vm given by the scaling form

P (vm|S) = 1√
2DS

FS

(
vm√
2DS

)
, (66)

where FS(x) is the Brownian excursion scaling function

FS(x) =
√

2π

x4

∞∑
n=0

n2π2

(
n2π2

x2
− 3

)
e−n2π2/2x2

. (67)

Using the Poisson summation formula [61]
∞∑

n=∞
e−ny2 =

√
π

y

∞∑
n=∞

e−n2π2/y2
, (68)

the scaling function can be written

FS(x) =
∞∑

n=1

(32n4x3 − 24n2x)e−2n2x2
(69)

and we can see that it has the asymptotic form

FS(x) =
{√

2π5
(

π2

x6 − 3
x4

)
e−π2/2x2

, x → 0

(32x3 − 24x)e−2x2
, x → ∞,

(70)

 

 

×

×

(a)

 

 

×

(b)

FIG. 3. (Color online) (a) Scaling collapse of P (vm|S), the
distribution of maximum velocities for avalanches of size S, onto the
form of Eq. (66). The rescaled distributions approach the analytical
scaling function from Eq. (67) for sufficiently large avalanche sizes.
(b) Scaling collapse for the overall maximum velocity distribution
P (vm) for quasistatic driving (c = 0) and several different values of
k (see the caption of Table I for the physical definition) to the form
of Eq. (78). The scaling function plotted is F (x) = Cx2 sinh−2(x),
where the constant C = 1.44 is adjusted to fit near the tail and is
proportional to that given in Eq. (78) with D = 1/2. Adjustment
of this nonuniversal constant factor is required since the part of
the distribution near the origin that deviates from scaling alters the
overall normalization. The inset shows the same maximum velocity
distributions before rescaling.
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which guarantees that all of its moments are finite. In Fig. 3
we present the numerically computed distribution of maximal
velocities for different avalanche sizes, which agrees very well
with the analytical result. The rescaled PDF P (vm|S) collapses
onto a scaling form as predicted by Eq. (67).

VI. OVERALL DURATION, SIZE, AND MAXIMUM
VELOCITY DISTRIBUTIONS

The overall duration distribution is proportional to the
probability that an avalanche returns to the origin at time T ,

assuming we use absorbing boundary conditions to guarantee
that it will remain strictly positive in between. This means that,
from Eq. (37), we have

P (T ) = lim
ε→0

N (ε)P (ε; T ,ε,0)

= lim
ε→0

N (ε)

(
2k

1 − e−kT

)2−c̃
e(c̃−1)kT ε1−c̃

�(2 − c̃)
, (71)

where N (ε) is a proportionality constant that cannot simply
be set by normalization since P (ε,T ; ε,0) ∼ T −2+c̃ for T →
0 and the normalization integral diverges at this limit. This
divergence must occur because we expect that the return time
to the origin gets shorter as the starting value ε gets closer to
zero. To get rid of it, we need to set a cutoff T ∗ ∼ ε defined as
the minimum duration of an observable avalanche. The natural
long-duration cutoff is set by 1/k. Assuming that these cutoffs
are well separated, namely, that kT ∗ 
 1, we have

P (T ) = k(1 − c̃)(kT ∗)1−c̃ekT

(
1

ekT − 1

)2−c̃

(72)

for T > T ∗. This has power-law behavior P (T ) ∼ T −αG(kT )
with exponent α = 2 − c̃ and G(x) a cutoff function, as can
be seen by taking the limit k → 0. The exponent agrees with
the one reported in Refs. [1,29]. In Fig. 4(a) we numerically
verify Eq. (72) for different values of c and k.

The avalanche size distribution can be computed similarly.
Starting from Eq. (3) with k = 0 as in Ref. [29] and using the
results above for a random walk in a logarithmic potential, one
can obtain the exponent τ = (3 − c̃)/2. For k �= 0 and c = 0,

we can use Eq. (62) and normalize with a cutoff S∗ ∼ ε2 as
we did with the duration distribution, obtaining

P (S) =
√

S∗

2S3/2
e−(1/4D)k2S. (73)

The tail behavior of the overall distribution P (vm) of avalanche
maxima can then be derived in the adiabatic limit by integrating
Eq. (67) against the overall size distribution (73),

P (vm) =
∫ ∞

S∗
P (vm|S)P (S)dS

=
√

2DS∗

2v2
m

∫ vm/
√

2DS∗

0
xFS(x)exp

[
−1

2

(
kvm

2Dx

)2
]

dx.

(74)

The asymptotic behavior of the integrand allows us to take the
upper limit of the integral to infinity provided vm � √

2DS∗.

(a)

 

 

×

(b)

FIG. 4. (Color online) (a) Numerical scaling collapse of the
avalanche duration distribution P (T ) for different values of k (see the
caption to Table I for the definition) and the driving rate c ≡ 〈v〉/k

to the form of Eq. (72). The scaling functions plotted are Fc̃(x) =
C(c̃)exx2−c̃(ex − 1)c̃−2, which are proportional to the ones given in
Eq. (72). The nonuniversal constants are fit by eye as C(0) = 3.0
and C(0.2) = 3.375. The inset shows the same distributions before
rescaling with the curves for c̃ = 0.2 offset for visibility. (b) Collapse
of the size distributions for different values of k to the form of
Eq. (73). The theoretical curve plotted is F (x) = C exp(−x/2),
where C = 0.6, which is, up to normalization, what is given in
Eq. (73) with D = 1/2. The inset shows the size distributions before
rescaling.

The infinite sum can then be integrated term by term using the
formula

∫ ∞

0
xne−Ax2−B/x2

dx = A−(n+1)/4B(n+1)/4K(n+1)/2(2
√

AB),

(75)
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where Kν(x) is the modified Bessel function of the second
kind. In this way, the correction factor to v−2

m scaling becomes

∫ ∞

0
xFS(x)exp

[
−1

2

(
kvm

2Dx

)2
]

dx

=
√

π

2

(
kvm

D

)2 ∞∑
n=1

ne−nkvm/D. (76)

The infinite series can be summed using the formula∑
n n exp(−nx) = 4/ sinh2(x/2), giving

∫ ∞

0
xFS(x)exp

[
−1

2

(
kvm

2Dx

)2
]

dx =
√

8π

(
kvm

D

sinh
(

kvm

2D

)
)2

.

(77)

Normalizing with a small velocity cutoff v∗
m ∼ √

2DS∗, the
distribution is

P (vm) = v∗
m

v2
m

( (
kvm

2D

)
sinh

(
kvm

2D

)
)2

, (78)

which is valid for vm � v∗
m. We have already seen in Ref. [27]

that the driving rate dependence of the power law P (vm) ∼ v
−μ
m

at criticality is μ = 2 − c̃. In Fig. 3(b) we confirm Eq. (78)
numerically.

Although we have derived the exact functional form of
P (vm), it is important to note that the μ = −2 exponent
follows essentially from two facts. The first is that the scaling
forms given by Eqs. (54) and (66) have the exponents one
would assume from dimensional analysis and the second
is that the integral leading to Eq. (78) converges when its
bounds are taken to 0 and ∞. Under these conditions, the
fluctuations in vm are distributed narrowly about the average
value 〈vm|T 〉 ∼ T and so we expect the maximum velocity
to have the same scaling exponent as the duration. However,
there is no guarantee that these conditions hold in all cases.

In fact, this simple scaling by dimensional analysis runs
contrary to what one might normally expect for an extreme
value distribution. For example, if one wanted to make a simple
argument, one could ignore correlations and boundary condi-
tions and crudely approximate the avalanche as a sequence
of N = T/δt independent, exponentially distributed variables
with average value 〈v|T 〉 = AT where δt is the duration of
a time step and A is a proportionality constant with the same
dimensions as D. Then the probability distribution function of
the maximum value is given by P (vm|T ) = N

AT
e−vm/AT (1 −

e−vm/AT )N−1. The expectation value of vm can be determined
by using the binomial expansion

P (vm|T ) = N

AT

N−1∑
k=0

(N − 1)!(−1)k

k!(N − 1 − k)!
e−(k+1)vm/AT .

The integration corresponding to the first moment can be
performed term by term and the average maximum takes the
form

〈vm|T 〉 = N

AT

N−1∑
k=0

(N − 1)!(−1)k

k!(N − 1 − k)!

(AT )2

(k + 1)2
.

This is equivalent to 〈vm|T 〉 = AT [�(N + 1) + γ ], where
�(x) = d ln �(x)/dx and γ is the Euler constant. As T →
∞, this expression scales asymptotically as AT ln(T/δt).
The logarithmic enhancement is due to the fact that the
random variable has T/δt independent tries to achieve a value
well above its average. Integrating this against the duration
distribution P (T ) ∼ T −2 gives a maximum value distribution
with leading-order behavior P (vm) ∼ ln(vm)v−2

m , a slower
decay than the exact answer P (vm) ∼ v−2

m . However, temporal
correlations change the picture considerably, preventing the
average maximum value from scaling faster than the average,
so the actual scaling law is 〈vm|T 〉 ∼ 〈v|T 〉 ∼ T which
corresponds to P (vm) ∼ v−2

m .
In Table I we summarize the quasistatic mean-field theory

results for the scaling functions and exponents, incorporating
the new results for the maximum avalanche velocity. However,
it should be stressed that these cutoff exponents have not been
observed in all cases in experiments and simulations with
long-range forces, even when the power-law scaling exponents
are mean field. In Ref. [28] it is argued that in the case when
the cutoff is caused by a demagnetizing field coupled globally,
with ∂tu = −k

∫
u(t,x)d2x, instead of the local coupling

∂tu = −ku(x,t), the cutoff exponents are different from the
mean-field predictions in a way that follows from dimensional
analysis and is consistent with Barkhausen noise experiments
and long-range simulations. In our case it would change the
maximum velocity cutoff exponent from ρ = 1 to ρk = 1

3 . The
effects cancel out and do not alter the exponent products that
appear in the last three rows of Table I. In other cases [9],
deviation of the cutoff exponents from the mean-field values
may be caused by hardening, an effect not accounted for by
our considerations.

VII. DISCUSSION AND CONCLUSION

We have calculated exact scaling functions and exponents
for the maximum avalanche velocity statistics in a mean-
field approximation of interface depinning. The distribution
of maximum events in avalanches of fixed duration has a
robust scaling form with a scaling function that depends on
the driving rate, while the distribution for fixed avalanche
sizes is independent of the elastic coupling constant in
the adiabatic limit. The statistics of maximum velocities in
arbitrary avalanches follows by integrating the maximum value
distribution for fixed avalanche size or duration against the size
or duration distribution. We find that the distribution of peak
velocities in a train of nonoverlapping avalanches has a scaling
regime with a power-law exponent of μ = 2 − c̃ followed
by a cutoff regime for vm > D/k. Although the mean-field
theory captures very well the universal statistical properties
of avalanches, i.e., the size, duration, and maximum value of
plastic slip avalanches, it still remains an open problem as
to what extent it can also describe other statistical quantities
such as velocity fluctuations during plastic deformations.
For instance, discrete dislocation simulations report that the
individual dislocation velocity probability distribution follows
a power law with an exponent of ∼ −2.5 [7], whereas Eq. (7)
from mean-field theory predicts an exponent of −1 for the
collective velocity distribution.
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Based on our calculations, we expect the v
−μ
m power-law

scaling of the maximum velocity distribution to be a very
robust experimental observable, even in the case of poor time
resolution where the true maximum might be missed. In fact,
even if all an experiment could accomplish was to measure
a random velocity within each avalanche, the inverse-squared
power-law prediction does not change. This can be seen by
a simple scaling argument. Namely, Eq. (54) predicts that the
average value of the maximum velocity scales linearly with the
avalanche duration as 〈vm|T 〉 ∼ T , thus in the same way as the
average velocity 〈v|T 〉 = 〈S|T 〉/T ∼ T . Since the maximum
does not outpace the average as the avalanches get larger,
we expect the same power-law behavior for the distribution
regardless of whether we sample the maximum or a random
point in the avalanche signal. This implies that even if the
maxima are taken from a low-resolution time series, one should
see an inverse-squared power-law distribution in the limit of
slow driving and this may make the maximum velocity easier to
work with than the duration in low-resolution experiments. The
scaling 〈vm|S〉 ∼ S1/2 should show a similar independence
from how well vm is able to be measured.

However, one thing that can affect the exponent substan-
tially is the driving rate, which must be very slow in order
to see μ = 2. In fact, the variability in the acoustic emission
experiments [7,14–18] on the value of μ might be related to
the fact that the experiments are performed at nonzero driving
rate. If that is the case, we find that the deviation from the
adiabatic driving rate enters the mean-field exponents as μ =
2 − c̃, in a way similar to that for the driving-rate-dependent

scaling exponents α and τ in the power-law distributions
of avalanche durations and sizes. Experiments where the
power-law exponent is studied as a function of applied shear
rate could test this.

Finally, we have shown that exact results for scaling
functions in the maximum velocity distributions are easy to
derive, even including nonzero sweep rates and tuning away
from criticality. For instance, our results for the maximum
velocity distributions P (vm|T ) and P (vm|S) given duration
and size, given in Eqs. (54) and (66), respectively, have simple
scaling forms, the second of which is independent of the
distance from criticality k. Though it might be difficult to
obtain sufficient statistics to check the scaling functions of
these distributions experimentally, the predicted scaling of the
conditional moments 〈vn

m|T 〉 ∼ T n and 〈vn
m|S〉 ∼ Sn/2 could

be checked much more easily. This could serve as a starting
point for new precision tests of universality in the Barkhausen
effect where high-resolution time series are obtainable and
there is already strong evidence of mean-field behavior [29].
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Rev. E 75, 021123 (2007).
[44] J. Rambeau, S. Bustingorry, A. B. Kolton, and G. Schehr, Phys.

Rev. E 84, 041131 (2011).
[45] D. S. Dean and S. N. Majumdar, Phys. Rev. E 77, 041108 (2008).

[46] S. Berman, Ann. Math. Stat. 35, 502 (1964).
[47] J. Pickands, Trans. Am. Math. Soc. 145, 75 (1969).
[48] J. F. Eichner, J. W. Kantelhardt, A. Bunde, and S. Havlin, Phys.

Rev. E 73, 016130 (2006).
[49] T. Antal, M. Droz, G. Györgyi, and Z. Rácz, Phys. Rev. Lett. 87,
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