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The “kill the winner” hypothesis is an attempt to address the problem of diversity in biology. It argues
that host-specific predators control the population of each prey, preventing a winner from emerging and
thus maintaining the coexistence of all species in the system. We develop a stochastic model for the kill the
winner paradigm and show that the stable coexistence state of the deterministic kill the winner model is
destroyed by demographic stochasticity, through a cascade of extinction events. We formulate an
individual-level stochastic model in which predator-prey coevolution promotes the high diversity of
the ecosystem by generating a persistent population flux of species.
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The high diversity of coexisting species in most ecosys-
tems has been a major puzzle for more than 50 years. In a
classic paper, Hutchinson articulated the so-called paradox
of the plankton for the case of marine ecosystems [1,2]: Why
do many species of plankton that feed on the same nutrients
coexist, somehow avoiding the phenomenon of competitive
exclusion [3], where one species outcompetes all the others?

The various tentative resolutions of the paradox can be
divided into two classes [4—6]. In the first, the ecosystem is
argued to have failed to reach a fixed point equilibrium state
in which the competitive exclusion principle applies, due to
temporal or/and spatial factors. For example, the time
needed for the system to reach equilibrium might be much
longer than the time over which the system undergoes
significant changes in its boundary conditions, such as
weather [7]. Spatial heterogeneity can increase the global
diversity of the system by maintaining local patches that
each obey the competitive exclusion principle but globally
support the coexistence of multiple species [8,9] (for
another perspective, see [10]). In the second class of
resolutions, interactions such as predation, in conjunction
with competitive exclusion, promote the coexistence of
species through time-dependent or stochastic steady states
[11-13]. One widely celebrated example of this behavior,
which is seen in both natural ecosystems as well as some
laboratory systems such as chemostats [14,15], is the
continual succession of different community members
known as “kill the winner” (KTW) dynamics [12,16].
This has been frequently revisited and expanded in the
context of marine systems [17,18] and is related to the
Janzen-Connell hypothesis [19,20] for tree biodiversity.

In the KTW hypothesis [12,16,17], there are two groups
of resource consumers, for example, bacteria and plankton.
The plankton community generally has a lower efficiency
of resource usage than bacteria. They remain in the system,
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only because a protozoan consumes the bacteria non-
selectively and thus limits the bacterial population, leaving
room for plankton to thrive. Inside the bacterial community,
different strains have distinct growth rates. They coexist,
with no dominating winners, due to host-specific viruses
controlling the corresponding strains. This results in two
layers of coexistence through KTW dynamics (bacteria-
plankton coexistence and bacterial strain coexistence),
nested like Russian dolls [17].

The original KTW model [12,16] was formulated as
deterministic Lotka-Volterra-type equations for the species
biomass concentrations. The high diversity of the system is
exhibited in the steady state where multiple species coexist
with positive biomass; these calculations assume that the
system is spatially homogeneous and that the number of
individuals is large enough so that it is valid to use a
continuous density to describe the population. However,
this is not appropriate when the population is finite, because
large fluctuations are able to drive the system towards
extinction, an outcome that cannot be captured by a
continuous density that is allowed to become arbitrarily
small [21,22]. Requiring the population size to be integer-
valued leads inexorably to shot noise, referred to in the
ecological context as demographic stochasticity.

The purpose of this Letter is to explore the effect of
demographic stochasticity on the KTW paradigm and
demonstrate that the stochasticity causes the coexistence
steady state in the deterministic KTW model to break down
through a cascade of extinctions, leading to a loss of
diversity. This cascade can be avoided by allowing the
predators and prey to coevolve by mutation. We propose a
stochastic model of the coevolution and show that it
generically maintains the diversity of the ecosystem, even
in the absence of spatial extension. Our results for KTW
models complement earlier findings that mutation controls
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the diversity of strategies in more abstract models of
ecosystems, idealized as evolutionary games, such as the
prisoner’s dilemma [23]. Our results strongly suggest that
diversity reflects the dynamical interplay between ecologi-
cal and evolutionary processes and is driven by how far the
system is from an equilibrium ecological state (as could
be quantified by deviations from detailed balance). The
surprisingly deep role of demographic stochasticity uncov-
ered here is consistent with earlier demonstrations that
individual-level minimal models capture a wide variety of
ecological phenomena, including large-amplitude persis-
tent population cycles [24], anomalous phase shifts due to
the emergence of mutant subpopulations [25,26], spatial
patterns [27,28], and even reversals of the direction of
selection [29] without requiring overly detailed modeling
of interspecies interactions.

Model.—The key component of the KTW hypothesis is
that, for each resource competitor, there is a corresponding
predator that can prevent it from becoming a dominant
winner. The Russian-doll-like hierarchy is not essentially
important for the basic idea. Thus, we focus on only a
single layer of KTW interaction, the host-specific viral
infection, and ignore the multilevel structure.

We write down the individual reactions for a simplified
system of m pairs of prey and predators, which we will take
to be bacteria and viruses (phages), as follows:

b; ¢ij
. d:
Y+ Xi— (B + 1), Y —@. (1b)

All rates are positive. i, j = 1,2,...,m are strain indices.
Bacterial individuals X; have strain-specific growth rate b;.
They compete with each other for an implicit resource with
strength e;;. Viruses of the ith strain ¥; infect the corre-
sponding host X; with rate p; and burst size f3; and decay to
nothing @ with rate d;. These reactions form the minimal
generalized KTW model.

Below are the corresponding mean-field rate equations:

m

B; = b;B; - Z e;jB;B;— p;B;V;, (2a)
=

Vi =pipiBiVi—d;V;. (2b)

The dot operator stands for the time derivative. B; and V;
represent the densities of the ith bacterial and viral strains,
respectively. The competition matrix e;; is sometimes taken
as random [30] or, more realistically, as arising from
evolutionary dynamics, such as in a food web [31]. The
KTW model describes situations where diversity is main-
tained by predation, with a secondary contribution from the
competition e;;. Here, we are interested in the sensitivity of

KTW to stochasticity, and the conclusions are not changed
if we set ¢;; to a constant value e for simplicity.
Equation (2) has a nonzero steady state as shown below:

d' 1 m
Bf = ——, Vi=—|bi—e B’f>. (3
pipi Pi ( ; ! )

1

We require all B} and V7 to be positive, which limits the
parameters to satisfy b; > e ", d;/B;p;, V i. Linear
stability analysis shows that the steady state Eq. (3) is
exponentially stable, with all eigenvalues of the linear
stability matrix having negative real parts, as long as the
quantity x; = f;p; B;V; = d;(b; — e > d;i/Bip;) is dis-
tinct for each i. The steady state can be either a focus or a
node, depending on whether the eigenvalues have nonzero
imaginary parts or not. The parameters used in this Letter
result in the steady state being a focus, but the conclusion
also applies to the node case.

In Fig. 1, we show in the first row the time series of prey
and predator densities obtained from a numerical evolution
of Eq. (2) for m = 10 pairs of bacteria and phages. Species
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FIG. 1. Population density time series obtained from the
generalized KTW framework, with ten bacterium-phage pairs.
The left column is for bacteria and the right for viruses. The first
row shows the result from a numerical evolution of the deter-
ministic generalized KTW equations, with species densities
initially perturbed randomly away from the steady state. The
parameters are b = (0.75,0.8,0.85,0.9,0.95,1,1.05, 1.1, 1.15,
1.2), pi=p=2,f;i=p=10,d;=d =05, and ¢;; =e = 0.1.
The insets show the long time behavior, which demonstrates that
the steady state is a focus. For readability, only the decays of B,
and V, are shown. The second row presents a typical simulation
result of the stochastic version of the generalized KTW model,
using the same set of parameters. The system size is C = 1000,
and populations are initialized with the steady state value.
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densities are initially perturbed away from the steady state.
As shown in the figure insets, species densities decay back
to the steady state at long times, confirming the result of the
linear stability analysis. The oscillatory behavior at short
time scales demonstrates the steady state to be a focus.

To reveal the effect of demographic noise, we also
conduct the stochastic simulation of the corresponding
individual level reactions (1) with the same parameter set,
using the Gillespie algorithm [32]. The resultant species
density time series are shown in the second row in Fig. 1. In
contrast to the deterministic behavior of oscillatory decay,
species go extinct in a short time. Bacterial strains become
extinct due to a random fluctuation; this consequentially
triggers the extinction of the corresponding viral strains,
due to a lack of food. The number of species monotonically
decreases in the process, and the system diversity under-
goes a cascade.

The reason that the stable deterministic steady state of
the generalized KTW model cannot be maintained in the
presence of demographic stochasticity lies in the fact that
species populations in the stochastic model are all finite,
and the probability of the population reaching zero due to a
random fluctuation is always nonzero.

Ecosystems have evolved many potential mechanisms to
get around the path to extinction, as introduced at the
beginning of the Letter. Here, we discuss one possibility:
Prey and predator coevolve with each other so that fit
mutants are constantly being introduced into the system,
thus preventing the elimination of the species. Specifically,
prey improve their phenotypic traits (e.g., strengthening the
shell) to escape from predators, and predators also adjust
their corresponding traits (e.g., sharpening the claws) to
catch prey. This coevolutionary arms race has been well
documented in many systems [33,34]. Previous theoretical
studies focused on the dynamics of the traits of prey and
predator groups [35-37], and the structure of the predation
network [38], under different coevolving modes. Here, we
study how coevolution affects the diversity of the host-
specific predation system.

Coevolution model.—We modify the stochastic general-
ized KTW model (1) by adding in the following two sets of
reactions to describe mutations of the prey X; from strain i
to i = 1, and similarly those of the predator Y;:

Hi/2 H2/2
X=X, Y=Y . (4)

We assume that the mutation rates are strain independent
and one individual can mutate into its two neighbor strains
with the same rate, y¢, /2 for bacteria or u, /2 for viruses. We
set the boundary condition to be open, so that mutations out
of the index set {1,2,...,m} are ignored. We will refer to
Egs. (1) and (4) as the coevolving KTW (CKTW) model.

For sufficiently high mutation rates, the absorbing
extinction state in the generalized KTW model can be
avoided, in the sense that a strain can reemerge as mutants

are generated from its neighbor relatives after its
population drops to zero. Therefore, mutation can stimulate
a flux of population through different strains and promote
coexistence.

We define the diversity of the system in the CKTW
model using the Shannon entropy, S =—->", f;Inf;.
Here, f; is the fraction of the ith bacterial (viral) strain in
the entire bacterial (viral) community. The expression
reaches the maximum, when all strains coexist at their
deterministic steady state Eq. (3), and the minimum O,
when only one strain exists. We score S = —1 if either the
bacterial or viral community goes extinct.

We present population density time series in Fig. 2 and
the dependence of prey diversity on the mutation rates in
Fig. 3. We set y; = u, = u for simplification. The diversity
of the prey community is calculated at the end of the
diversity time series shown in the inset in Fig. 3(a), after the
system has gone through the transient region. Although, in
principle, species in a stochastic system will always go
extinct at a time exponentially long depending on the
population size [22], this extinction time scale is not
relevant in our simulation, and we thus focus on the system
state in the long steady region before the destined collapse.

For a small enough mutation rate (population time series
not shown), the entire community can become extinct
before mutants can emerge, and the system still collapses,
demonstrated by the diversity time series in the inset in
Fig. 3(a), as in the generalized KTW model. This corre-
sponds to region I in Fig. 3(a). For intermediate mutation
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FIG. 2. Population density time series in the stochastic co-
evolving KTW model. The left column is for bacteria and the
right for viruses. The system size is C = 1000, and the mutation
rates are set to be equal, y; = p, = p. Other rates are the same as
those in Fig. 1. The upper and lower rows show the cases of low
and high mutation rates, 4 = 0.015 and p = 1, respectively.
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FIG. 3. (a) The main figure shows the prey diversity S, defined

in the main text, as a function of the mutation rate y; = p, = u.
For each value of y, we conduct 100 replicates and calculate the
diversity values at the end of the simulations, represented by the
gray dots with the blue one being their mean. The inset shows
diversity time series at mutation rates from the three regions, with
1 =0, 0.015, and 1, respectively. For this particular set of
parameters, the mean-field generalized KTW equations give an
equal bacterial strain concentration at the steady state, and the
maximum diversity in the corresponding CKTW model is In m.
(b) A descriptive phase diagram of the dynamics, with the
mutation rate as the tuning parameter.

demographic noise, while some mutants can grow to be
dominant if they happen to confront only a few predators
when first emerging. Subsequently, the predator population
expands, feeding on the dominating winners, thus reducing
the winner population, and allowing the next dominator to
grow. In this way, we see that winner populations spike
alternatively in the time series, as in the first row in Fig. 2.
Near the onset of coexistence, the diversity has a large
deviation and is very sensitive to the mutation rate, as
shown in region II in Fig. 3(a). The large deviation is also
seen in the diversity time series in the inset. For a large
mutation rate, the coevolution-driven population flow is
fast enough to compensate for the demographic fluctua-
tions. All strains remain near the steady state, and no one
can win over others, as shown by the population time series
in the second row in Fig. 2. The diversity slowly
approaches the maximum, with small deviations, as dem-
onstrated in region III in Fig. 3(a). For an extremely large
mutation rate (figures not shown), we cannot view the
mutation as a perturbation to the ecological population
dynamics. Species populations deviate from the mean-field
steady state Eq. (3). Specifically, under the boundary

condition in our model, in which the mutations out of
the species space {1,2,...,m} are effectively individual
death, the population leaks through the boundary and
eventually reaches zeros at extremely large mutation rates.
According to the above discussion, we show three phases
of dynamics, as illustrated in Fig. 3(b): the extinction phase
at a low mutation rate, the winner-alternating phase at an
intermediate mutation rate, and the coexisting phase at a
high mutation rate.

Open system model.—So far, we have preassigned a
fixed number of predator-prey pairs in the system. A more
realistic approach is to let the system be open and evolve by
itself to establish however many species there can be.

As mutants take on new traits, the population spreads in
the trait space. This expansion usually is associated with a
trade-off in the fitness [35]: The further the trait is from the
origin, the lower the growth rate becomes. We model this
trade-off effect, assuming a 1D trait space, by setting up M
species and assigning the highest birth rate to the species
with index M /2, and decreasing the birth rate as the species
index goes from M /2 to 1 and from M /2 to M. The species
with index M /2 is at the center of the trait space and then is
the origin of the trait expansion. Species 1 and M have the
lowest birth rates that are almost 0, and further mutation of
the two will result in mutants with negative birth rates,
which cannot grow and are thus excluded from the model.
The species space {1,2,...,M} contains all possible
species that can potentially exist in the system. However,
under conditions of resource limitation, formulated by the
competition strength e, only a few with relatively high
growth rates, out of M, can eventually be established in the
system. The number of species that manage to thrive
corresponds to m in the previous models.

See Supplemental Material [39] for the stochastic sim-
ulation parameters and the resultant population time series
and diversity dependence on the mutation rate. Even
though the number of established pairs varies with time
and the population leaks out of the region deterministically
allowed by the carrying capacity, the system still exhibits
three phases depending on the mutation rate, similar to the
CKTW model with a fixed number of species.

Discussion.—In contrast to the model in Ref. [18], where
killing winners is exerted externally, we focus on the
intrinsically established KTW of the system. In the inter-
mediate and fast mutation regions of the CKTW model, the
ecological and evolutionary dynamics are coupled to each
other and occur on the same time scale. This type of
coupling can most easily be observed in microbial systems,
in which organisms have a high mutation frequency
[26,40,41]. Recent work has shown clearly the existence
of genomic islands, where genomes of different strains vary
in loci thought to be associated with phage resistance [42].
Both host-specific predation and mutation are important in
generating the observed diversity of the bacterial genome.
The minimal CKTW model can, in principle, describe the
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diversity in the above system. For example, by controlling
the mutation rate through an inducible promoter, using
molecular techniques pioneered in Ref. [43], we envisage a
fast bacterium-phage coevolution experiment to test the
predicted phase diagram.

In addition to inevitable simplification of biological
details, both the generalized KTW and the coevolving
KTW models assume that the system is well mixed,
ignoring any spatial dispersion. Consequently, they cannot
capture the reservoir effect [44] present in an ecosystem,
which means that, for any local community, organisms in
its surrounding environment can move into it, keeping it
supplied and refreshed. Specifically, even if a species goes
extinct in a local community, it can be reseeded there by the
surrounding reservoir. Well-mixed models should be
thought of as describing not the entire system but a much
smaller correlation volume, in which local demographic
stochasticity can be significant [27,45].
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Coevolution Maintains Diversity in the Stochastic “Kill the Winner” Model
Supplemental Material

This Supplemental Material describes simulations of
an open coevolving ecosystem, as described briefly in the
main text. We construct a species space to manifest the
trade-off in the birth rate due to mutation. For the par-
ticular set of parameters used in the simulations, there
are M = 20 distinct pairs of preys and predators that
can potentially exist in the system. The birth rates are
b = (0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85,
0.95, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1). The 11th
species has the highest birth rate and is the origin of trait
expansion. Mutations of the first and last species gen-
erating mutants with negative birth rates are excluded
from the model. Other parameters are p; = p = 2,
Bi =8 =10,d; =d = 0.5, and e;; = e = 1. The
individual level reactions have the same form as Eq. (1)
and (4) in the main text, with index ¢ = 1,2,..., M.
In the mean-field situation, the carrying capacity allows
the coexistence of 13 pairs, with indices from 5 to 17,
while the rest 7 species are forbidden. In the presence
of demographic stochasticity, mutants can emerge in the

forbidden region in the species space, although they can
not develop a significant population size, limited by the
high competition with other individuals. The number of
coexisting pairs can be greater that the value 13 predicted
by the mean-field calculation, and varies with time. As
shown in the prey population time series in Fig. S1(a)
and (b), a small mutation rate results in the alternation
of dominating winners, and a large mutation rate gener-
ates coexistence with much smaller fluctuations. Figure
S1 (c) and (d) show the distribution of prey population
across all species as a function of the distance to the win-
ner, defined as the most abundant strain. The red bar
graph stands for a snapshot at a certain moment, and
the blue one represents the average of the distribution
over a long time interval. It’s clear that a winner stands
out at low mutation rate, while no one is significantly
dominant at high mutation rate. Figure S1(e) shows the
dependence of prey diversity, defined as the Shannon en-
tropy, on the mutation rate. The three regions as seen in
the CKtW model with fixed number of pairs in the main
text are recovered.
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FIG. S1. Simulation results of the CKtW model with the number of coexisting species limited by the carrying capacity.
Parameters used are b = (0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1),
pi=p=2,0=0=10,d; =d = 0.5, and e;; = e = 1. The system size is C' = 1000. Population is initiated in the fittest species
and expands in the species space. (a) and (b) are prey population time series for small mutation rate p1 = p2 = p = 0.02 and
large mutation rate p1 = p2 = p = 0.5, respectively. At small mutation rate, winners alternate with time and the population is
localized to the winner species. At large mutation rate, all species coexist and the population distribution is roughly uniform
in the mean-field allowed region, with some mutants leaked into the forbidden species. (c) and (d) show the prey population
distribution across the species as a function of index distance from the winner strain, constructed from (a) and (b), respectively.
The red bar graph is calculated at t = 499.5, after the transient regime. The blue one is the distribution averaged over 501
snapshots uniformly sampled between ¢ = 249.5 and ¢t = 499.5. For reference, the mean-field steady state predicts that species
with indices from 5 to 17 coexist with equal abundance and that other species have zero population. The center bar at 0
distance is the population fraction of the most abundant strain. It’s clear that a winner dominates at low mutation rate but
not at the high one. (e) The dependence of prey Shannon entropy on the mutation rate, defined in the same way as in the
main text. At low mutation, the system collapses due to extinction; at intermediate mutation, diversity increases rapidly with
the rate; at high mutation, diversity stays near the maximum given by the deterministic steady state.
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