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The origin of biological morphology and form is one of the
deepest problems in science, underlying our understanding of
development and the functioning of living systems. In 1952, Alan
Turing showed that chemical morphogenesis could arise from a
linear instability of a spatially uniform state, giving rise to periodic
pattern formation in reaction–diffusion systems but only those
with a rapidly diffusing inhibitor and a slowly diffusing activator.
These conditions are disappointingly hard to achieve in nature,
and the role of Turing instabilities in biological pattern formation
has been called into question. Recently, the theory was extended
to include noisy activator–inhibitor birth and death processes.
Surprisingly, this stochastic Turing theory predicts the existence
of patterns over a wide range of parameters, in particular with
no severe requirement on the ratio of activator–inhibitor diffu-
sion coefficients. To explore whether this mechanism is viable
in practice, we have genetically engineered a synthetic bacterial
population in which the signaling molecules form a stochastic
activator–inhibitor system. The synthetic pattern-forming gene
circuit destabilizes an initially homogenous lawn of genetically
engineered bacteria, producing disordered patterns with tun-
able features on a spatial scale much larger than that of a
single cell. Spatial correlations of the experimental patterns agree
quantitatively with the signature predicted by theory. These
results show that Turing-type pattern-forming mechanisms, if
driven by stochasticity, can potentially underlie a broad range
of biological patterns. These findings provide the groundwork
for a unified picture of biological morphogenesis, arising from
a combination of stochastic gene expression and dynamical
instabilities.
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stochastic gene expression

A central question in biological systems, particularly in devel-
opmental biology, is how patterns emerge from an initially

homogeneous state (1). In his seminal 1952 paper “The chemi-
cal basis of morphogenesis,” Alan Turing showed, through linear
stability analysis, that stationary, periodic patterns can emerge
from an initially uniform state in reaction–diffusion systems
where an inhibitor morphogen diffuses sufficiently faster than an
activator morphogen (2). However, the requirements for realiz-
ing robust pattern formation according to Turing’s mechanism
are prohibitively difficult to realize in nature. Although Turing
patterns were observed in a chemical system in 1990 (3), the gen-
eral role of Turing instabilities in biological pattern formation
has been called into question, despite a few rare examples (ref. 4
and references therein).

Recently, Turing’s theory was extended to include intrin-
sic noise arising from activator and inhibitor birth and death
processes (5–8). According to the resulting stochastic Turing
theory, demographic noise can induce persistent spatial pat-
tern formation over a wide range of parameters, in particular,
removing the requirement for the ratio of inhibitor–activator
diffusion coefficients to be large. Moreover, stochastic Turing
theory shows that the extreme sensitivity of pattern-forming
systems to intrinsic noise stems from a giant amplification result-
ing from the nonorthogonality of eigenvectors of the linear

stability operator about the spatially uniform steady state (8).
This amplification means that the magnitude of spatial patterns
arising from intrinsic noise is not limited by the noise amplitude
itself, as one might have thought naively. These developments
imply that intrinsic noise can drive large-amplitude stochastic
Turing patterns for a much wider range of parameters than the
classical, deterministic Turing theory. In particular, it is often
the case in nature that the activator and inhibitor molecules
do not have widely differing diffusion coefficients; neverthe-
less, stochastic Turing theory predicts that, even in this case,
pattern formation can occur at a characteristic wavelength that
has the same functional dependence on parameters as in the
deterministic theory.

To explore how global spatial patterns emerge from local
interactions in isogenic cell populations, we present here a syn-
thetic bacterial population with collective interactions that can
be controlled and well-characterized (an introduction to this
perspective is in ref. 9), where patterning is driven by activator–
inhibitor diffusion across an initially homogeneous lawn of cells.
Synthetic systems can be forward-engineered to include rela-
tively simple circuits that are loosely coupled to the larger natural
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system into which they are embedded. This makes it easier to
design and control the molecular underpinnings of the biological
pattern phenomenon (10) and even front propagation phenom-
ena (11). Previous pattern formation efforts in synthetic biology
have focused on oscillations in time (12) or required either an
initial template (13) or an expanding population of cells (14),
neither of which show a Turing mechanism.

Experimental Results
Synthetic Biology of a Bacterial Community. In our synthetic gene
network design, which was guided by computational modeling
(SI Appendix, section 1), we used two artificial diffusible mor-
phogens: the small molecule N-(3-oxododecanoyl) homoserine
lactone, denoted here as A3OC12HSL, and the small molecule
N-butanoyl-L-homoserine lactone, denoted here as IC4HSL,
from the Pseudomonas aeruginosa las and rhl quorum sensing
pathways, respectively, in P. aeruginosa (15). A3OC12HSL serves
as an activator of both its own synthesis and that of IC4HSL,
while IC4HSL serves as an inhibitor of both signals (Fig. 1 A
and B and SI Appendix, section 1). A3OC12HSL activates its
own synthesis and synthesis of IC4HSL by binding regulatory
protein LasR to form a complex that activates the hybrid pro-
moter PLas−OR1. This promoter regulates expression of LasI,
an A3OC12HSL synthase, and RhlI, an IC4HSL synthase. To
increase the sensitivity of A3OC12HSL self-activation, LasR is
regulated by a second copy of PLas−OR1. IC4HSL inhibits syn-
thesis of A3OC12HSL and itself by forming a complex with the
regulatory protein RhlR. This complex activates expression of
lambda repressor CI, which in turn, represses transcription of
LasI, RhlI, LasR, and RhlR. Pattern formation in our system
can be modulated by altering the concentration of isopropyl
β-D-1-thiogalactopyranoside (IPTG), a small molecule inducer
that binds LacI and alleviates repression of PRhl−lacO. GFP
and red fluorescent protein (RFP) are expressed from the rhl
and las hybrid promoters, respectively, to aid in experimental
observation (SI Appendix, section 2).

In our experimental setup, the A3OC12HSL activator diffuses
more slowly than the IC4HSL inhibitor (SI Appendix, section 3).
The estimated diffusion coefficient for A3OC12HSL is 83 µm2/s,
and for IC4HSL, it is 1,810 µm2/s. The experimentally deter-
mined ratio of diffusion rates in our system of 21.6 is much
higher than the value of 1.5 predicted by Wilke–Chang corre-
lation in water (16), likely due to partitioning of A3OC12HSL
in the cell membrane, which slows its diffusion from cell to cell
(17). The slower diffusion rate of A3OC12HSL coupled with
positive feedback regulating its synthesis allows A3OC12HSL to
aggregate in local domains, leading to formation of visible red
fluorescent spots (cellular lawn illustration is shown in Fig. 1C).
Within these red domains, both A3OC12HSL and IC4HSL are
found in high concentrations, but because A3OC12HSL compet-
itively binds RhlR (SI Appendix, section 4 and Fig. S8), GFP is
attenuated (18). The faster diffusion rate of IC4HSL allows it
to diffuse into regions outside of the red fluorescent domains.
Here, IC4HSL is free to bind RhlR, activating GFP expres-
sion. Collectively, these processes lead to green regions between
red spots.

Experimental Patterns and Controls. To study pattern-forming
behavior, engineered cells are first cultured in liquid media, and
then, they are concentrated and plated on a petri dish to form an
initially homogeneous “lawn” of cells (Materials and Methods).
After plating, the petri dish is incubated for 24 h at 30 ◦C, and
microscope fluorescence images are captured as needed. Before
the self-activation of the A3OC12HSL synthase positive feed-
back loop, the cell lawn exhibits no fluorescence. However, over
time, red fluorescent spots emerge with sizes much larger than
that of a single cell (10–1,000×). Simultaneously, green fluores-
cence develops in a pattern with dark voids positioned precisely
in the locations of the intense red fluorescence (Fig. 2A). Time
series microscopy reveals that patterns begin to emerge after
approximately 16 h (SI Appendix, Fig. S12).
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Fig. 1. Design of a synthetic multicellular system for emergent pattern
formation. (A) Abstractly, the system consists of two signaling species
A3OC12HSL and IC4HSL. A3OC12HSL is an activator catalyzing synthesis of
both species, while IC4HSL is an inhibitor repressing their synthesis, with
additional repression by A3OC12HSL via competitive binding. (B) Genetic
circuit implementation. Promoter regions are indicated by white boxes,
while protein coding sequences are indicated by colored boxes. IPTG is an
external inducer modulating system dynamics. (C, Top) Illustration of sig-
naling species concentrations in 1D space. The dashed orange and blue
lines correspond to A3OC12HSL and IC4HSL, respectively. (C, Middle) Spa-
tial profiles of reporter proteins. RFP expression (red line) correlates with
A3OC12HSL concentrations, while GFP expression (green line) roughly mir-
rors RFP expression. (C, Bottom) A vertical slice of cell lawn. Cells express
fluorescence proteins according to the profiles above and produce a global
multicellular pattern.

In control experiments, we show that our patterns are not sim-
ply a result of the outward growth of clusters of differentially
colored cells (Fig. 2 B and C and SI Appendix, section 5). Also,
by performing an experiment with cells that harbor independent
bistable green/red toggle switches, we test whether observable
patterns would emerge if individual cells autonomously made cell
fate decisions at some point after plating (SI Appendix, section
5). The fluorescence fields after 24 h of incubation at 30 ◦C in
both control experiments are uniform, showing no emergence of
patterns.

Next, we examine how changes in the strengths of localized
interactions lead to different global outcomes in our pattern-
forming gene circuit. In our system, IPTG can be used to
modulate the inhibitory efficiency of IC4HSL in individual cells
by affecting CI expression from PRhl−lacO. Specifically, IPTG
relieves LacI repression of CI and GFP reporter. The increased
range of CI ultimately increases inhibition of both morphogens,
which is expected to decrease activator spot sizes, while causing
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Fig. 2. Experimental observations of emergent pattern formation mea-
sured by green fluorescence intensity (GFI) and red fluorescence intensity
(RFI). (A) Representative microscope images (based on six technical repli-
cates) of a typical field of view showing a fluorescent pattern formed by
an initially homogeneous isogenic lawn of cells harboring the Turing cir-
cuit with no IPTG. Spots and voids appear in the red fluorescence (RF)
and green fluorescence (GF) channels, respectively. (Scale bar: 100 µm.) (B)
Microscope images of cell lawns with constitutive expression of fluorescent
proteins. (Left) Cells expressing RFP, (Center) cells expressing GFP, and (Right)
mixed population of red and green cells. (C) Fluorescence density plots com-
puted from the images above (from left to right: red, green, red/green, and
Turing). Color intensity is in log scale [arbitrary units (a.u.)].

the field of CI and GFP reporter to be more strongly expressed.
Our data show that mean GFP levels increase sigmoidally
with inducer concentration, while the overall area of red spots
decreases (Fig. 3 A and C). In addition to offering further
support that our gene circuit gives rise to emergent patterns,
these results show how pattern formation characteristics can
potentially be tuned to fit future application needs.

Theoretical Results
Having established that our system forms emergent patterns, we
proceeded to study the mechanisms driving these patterns. We
formulated deterministic and stochastic models and analyzed our
data to assess agreement with the theory of stochastic Turing
patterns.

Deterministic Model. We first developed a detailed deterministic
reaction–diffusion model (SI Appendix, section 7). The model
explicitly describes chemical reactions for the LasI and RhlI
synthases, regulatory protein CI, and synthesis and diffusion
of the morphogens A3OC12HSL and IC4HSL. As the overall
system involves a large number of reactions with rate con-
stants that span multiple timescales, we made two commonly
used simplifying assumptions. First, we assume that operator
states of a promoter fluctuate much faster than protein degra-
dation rates. Second, we assume that mRNA half-life is much
shorter than protein half-life. These assumptions allow us to
eliminate operator fluctuation and mRNA kinetics and model

the system at the communication signals and protein levels as
follows:

∂U

∂t
=αuIu − γuU +Du∇2U [1]

∂V

∂t
=αv Iv − γvV +Dv∇2V [2]

∂Iu
∂t

=αiuF1(X1,C )− γiuIu [3]

∂Iv
∂t

=αivF1(X1,C )− γiv Iv [4]

∂C

∂t
=αcF2(X2,L)− γcC , [5]

where U and V are the concentrations of the two diffusible
morphogens A3OC12HSL and IC4HSL, respectively; Iu and Iv
are the concentrations of corresponding acyl homoserine lactone
(AHL) synthases, respectively; and C refers to CI.

We model the hybrid promoters using the following Hill
functions:
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Fig. 3. Mathematical modeling and correlation between pattern mod-
ulation experiments and simulations. (A) Experimental results for IPTG
modulation of pattern formation with microscopy images corresponding
to specific IPTG concentrations in B. The same display mappings were
used for all images in A. (B) Collectivity, metric parameter Θ is influ-
enced by IPTG modulation. (C) Pattern statistics over IPTG modulation for
experimental results. (D) Pattern obtained from simulating a determinis-
tic reaction–diffusion model with Dv/Du = 100. (E) Pattern statistics over
IPTG modulation for deterministic modeling. (F) Patterns obtained from
simulating our deterministic model (Upper) and stochastic spatiotempo-
ral model (Lower) at the measured diffusion ratio of Dv/Du = 21.6. (G)
Pattern statistics over IPTG modulation for stochastic modeling. a.u., arbi-
trary unit.
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F1(X1,C )=

[
1+ f1

(
X1
Kd1

)θ1][
1+ f −1

2

(
C

Kd2

)θ2]
[
1+

(
X1
Kd1

)θ1][
1+

(
C

Kd2

)θ2] [6]

F2(X2,L)=

[
1+ f3

(
X2
Kd3

)θ3][
1+ f −1

4

(
L

Kd4

)θ4]
[
1+

(
X2
Kd3

)θ3][
1+

(
L

Kd4

)θ4] , [7]

where F1(X1,C ) and F2(X2,L) are the production rates of the
promoters PLas−OR1 and PRhl−lacO, respectively; X1 and X2 are
the LasR-A3OC12HSL complex and the RhlR-IC4HSL com-
plex, respectively; and L is the concentration of unbound LacI
protein. We use the definitions

X1 =RuU [8]

X2 =
RvV

(1+U /Kc3)
[9]

L=λl

(
1+ f −1

6 (I /Kd6)
θ6

1+ (I /Kd6)
θ6

)
, [10]

where I is the IPTG concentration and Ru and Rv are the
regulatory proteins LasR and RhlR, respectively:

Ru =λuIu [11]

Rv =λv

(
1+ f −1

5 (C/Kd5)
θ5

1+ (C/Kd5)
θ5

)
. [12]

A summary of the variables used in our model is available in SI
Appendix, Table S5, and definitions of the rate constants are in
SI Appendix, Tables S6 and S7. Hill functions used in this model
have a shared form of Y = 1+f (X/K)θ

1+(X/K)θ
, where X and Y corre-

spond to the input and output of the function, respectively; K
is the dissociation constant; θ is the Hill coefficient; and f is the
fold change of Y on full induction by X .

We initially ran simulations of this model using a high diffu-
sion rate ratio ( Dv

Du
) of 100. These simulations yield patterns of

red spots and green voids (Fig. 3D), suggesting that the under-
lying dynamics of our system are Turing-like, with the potential
for Turing instabilities. Deterministic simulations of IPTG mod-
ulations also correlate well with the trends of the experimental
results (Fig. 3E and SI Appendix, section 6).

While the overall behavior of our system is reminiscent of
classical Turing patterns (19), there are key differences. In par-
ticular, when we ran simulations at the measured diffusion rate
ratio of Dv

Du
≈ 21.6, patterns did not arise (Fig. 3F). For some

two-node implementations of Turing systems, this rate would
be sufficient for pattern formation (20). In addition, certain
networks with more nodes can allow small or even equal mor-
phogen diffusion rate ratios to generate Turing instabilities (21).
However, a practical biological implementation imposes certain
dynamics, such as delays associated with protein production,
that can strongly impact pattern formation (22, 23). Indeed, our
deterministic modeling results suggest that the ratio of diffusion
constants for the activator and inhibitor in our system is either
barely within the range required for a Turing instability or even
outside the range, depending on the precise medium in which
signal diffusion is measured (SI Appendix, section 7). In addition,
whereas in the deterministic simulation, spots are identical and
evenly distributed, those in the experimental systems vary in size,
shape, fluorescence intensity, and the intervals between them.

Stochastic Model. The deterministic modeling results indicate
that our system may be beyond the regime where classical Turing

patterns are formed but still within the regime where stochastic
Turing patterns occur (5–8). Indeed, gene expression in microbes
is inherently noisy due to the small volume of cells and the fact
that many reactants are present in low numbers, suggesting that
stochastic Turing patterns could be present in our system (24).

Noise in stochastic Turing patterns expands the range of
parameters in which patterns form, in contrast to the usual
expectation that noise serves as a destabilizing agent. The pat-
terns observed in stochastic Turing systems correspond to the
slowest decaying mode of the fluctuations. Similar noise stabi-
lization phenomena can be observed in other systems that are
out of equilibrium. For example, in predator–prey systems, fluc-
tuations can drive temporal oscillations of populations (25, 26).
Noise-driven stabilization has also been recently discovered in
the clustering of molecules on biological membranes (27, 28)
and in models that exhibit Turing-like pattern formation (7). In
particular, whereas spatial symmetry breaking and pattern for-
mation via the original Turing design require two morphogens
with diffusion rates that differ by a large factor on the order of 10
or 100 (1), the requirements to form stochastic Turing patterns
are less stringent. For example, in a pattern-forming plankton–
herbivore ecosystem, the noise associated with discrete random
birth and death processes reduces the required ratio of diffusion
constants for pattern formation from a threshold of 27.8 for nor-
mal Turing patterns to a threshold of 2.48 for stochastic Turing
patterns (5–8).

To determine whether noise in the chemical reactions underly-
ing gene expression and morphogen diffusion in our system can
cause the emergence of patterns over a wider range of param-
eters than a deterministic model, we constructed a stochastic
spatiotemporal model using the same biochemical reactions, dif-
fusion, and rate constants used in our deterministic model (SI
Appendix, section 8). This model captures stochastic effects in
the production and degradation of the proteins and morphogens
in our system but approximates diffusion as deterministic. Simu-
lations of the stochastic model generically produce patterns with
large variability in spot size, shape, intensity, and intervals, which
are similar to the patterns observed in our experiments and dif-
ferent from those predicted for the deterministic model (Fig.
3F). We have compared the experimental patterns with stochas-
tic simulations in both real space and in 2D Fourier transform
(2DFT) space (SI Appendix, section 8). Neither the experimen-
tal 2DFT nor the simulated 2DFT contain pronounced peaks
that would be present in a deterministic honeycomb Turing
pattern. Moreover, as the IPTG concentration is increased,
both experimental and simulated patterns become more regular
(Fig. 3G).

To further test the hypothesis that we are observing stochas-
tic Turing patterns, we measured the power spectrum for both of
our fluorescent reporters. Theory predicts that the power spec-
trum will have a power law tail as a function of wavenumber, k ,
for large wavenumbers, with an exponent characteristic of the
noise source (7, 25). The exponent values are −2 and −4 for
stochastic Turing patterns and deterministic Turing patterns with
additive noise, respectively, and can be interpreted simply as fol-
lows. The −2 arises, because at small frequency or wavenumber,
the random variable (i.e., concentration) is simply diffusing and
therefore, follows the behavior of a random walk, which has a
power spectrum that exhibits a −2 power law. The −4 arises,
because for a system that is executing deterministic damped peri-
odic motion but driven by additive white noise, the response of
the random variable is a Lorentzian, with an asymptotic behavior
for the power spectrum that exhibits a −4 exponent.

For the GFP channel, we observe a power law tail with an
exponent of −2.3± 0.4 (Fig. 4B and SI Appendix, section 9A).
For the RFP channel, we also observe a power law tail with
an exponent of −3.9± 0.4 (SI Appendix, section 9A). To bet-
ter understand the implications of these tails, we examined
our detailed stochastic model of the genetic systems and also
developed a reduced stochastic model that explicitly includes
only the morphogens (SI Appendix, section 9B). Both models

Karig et al. PNAS | June 26, 2018 | vol. 115 | no. 26 | 6575

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1720770115/-/DCSupplemental


10−3 10−2 10−1 10010−1

100

101

102

103

104

105

Po
w

er
/W

av
en

um
be

r (
dB

/ra
d/

px
) power spectrum

best fit −2.3

10−2 10−1 100101

102

103

104

105

106

107

Po
w

er
/W

av
en

um
be

r (
dB

/ra
d/

gr
id

)

trials
mean power spectrum
best fit −2.4

A B C

±0.2
±0.4

ν/
μ

e/p

Parameter Range

d/p

Radial Power Spectrum GFP

Normalized Wavenumber k (π rad/px) Normalized Wavenumber k (π rad/px)

Simulated Radial Power Spectrum

Fig. 4. Spectral analysis and parameter analysis. (A) Pattern-forming regimes in parameter space and estimated parameters for our system. Parameters
above the green surface of neutral stochastic stability can form stochastic patterns, and parameters above the blue surface of deterministic neutral stability
can form deterministic Turing patterns. The ratio of the diffusion coefficients ν/µ, the ratio of degradation rate to production rate d/p, and the ratio of
production rates are estimated for our system by the yellow ellipsoid. The parameters for our system are mostly in the regime where stochastic patterns
form and outside the region where deterministic Turing patterns form. Example stochastic simulations are shown for parameters drawn from a deterministic
parameter region with Dν/Dµ = 100 (Upper Right) and a stochastic region with Dν/Dµ = 21.6 (Lower Right). (B) Radial power spectrum of green fluores-
cence and best fit power law tail with an exponent of −2.3± 0.2. (C) Radial power spectrum for eight trials of our stochastic simulation, their mean, and
the best fit power law tail.

predict that our experimental parameters will produce a stochas-
tic pattern with a power law tail of −2 for both the activator
and the inhibitor at asymptotically large wavenumbers (Fig 4C
and SI Appendix, section 9C). However, in the range of param-
eters likely to correspond to the experiments (Fig. 4A and SI
Appendix, section 9C), the detailed stochastic model predicts that
the exponent of the power law tail for the activator will be −4
over a large range of intermediate wavenumbers before it even-
tually undergoes a cross-over to a power law with an exponent
−2 at high wavenumbers (SI Appendix, Fig. S24). This behavior
once again agrees with our experimental data and supports our
identification of stochastic Turing patterns. In summary, spectral
analysis of the patterns of activator and inhibitor is consistent
with a model in which fluctuations in the amount of signaling
morphogens drive stochastic Turing patterns.

Our analysis of the stochastic Turing model predicts that
stochastic patterns form over a wide range of parameters (SI
Appendix, section 8). Indeed, our stochastic model predicts that
stochastic Turing patterns are possible at the measured ratio
of diffusion rates for A3OC12HSL and IC4HSL (Figs. 3F and
4A). In addition, to determine the sensitivity of the stochastic
model to the parameters chosen, we individually varied parame-
ters from 0.5× their nominal value to 1.5× their nominal value
while keeping all other parameters fixed at their best estimated
value. For each set of parameters, we calculate the analytical
power spectrum and the eigenvalues of the Jacobian (linear sta-
bility matrix) of the stochastic model evaluated at a fixed point
found numerically. Based on this analysis (SI Appendix, section
8), we classify each set of parameters as producing an unstable
homogeneous state at wavenumber k =0, a stable homogeneous
state, a stochastic Turing pattern, or a deterministic Turing pat-
tern. Specifically, we classify a set of parameters as producing a
pattern if they produce a peak in the calculated power spectrum
at a nonzero wavenumber. To distinguish between stochastic
Turing patterns and deterministic Turing patterns, we examine
the eigenvalues of the corresponding Jacobian. If the real part
of all of the eigenvalues is negative for all wavenumbers, then
the pattern must be due to stochasticity. If there is any range
of wavenumbers that have corresponding positive real parts of
their eigenvalues, then the pattern is produced by the tradi-
tional Turing mechanism. The results of this analysis are shown
in SI Appendix, Fig. S22 and illustrate the significant ranges
for each parameter that can lead to stochastic Turing patterns.
Indeed, the estimated parameter values yield stochastic Turing
patterns and variation of Du , Dv , and IPTG, and several other
parameters never produce deterministic patterns; therefore, our
results are very insensitive to estimation error of these important

parameters. Overall, varying the parameters one at a time, 68%
of the values yield stochastic Turing patterns.

To quantify the way in which stochasticity enlarges the pattern-
forming regime of parameter space, we simultaneously varied all
model parameters and performed the classification used above.
Specifically, we used Latin hypercube sampling to randomly gen-
erate 500 parameter sets, where all of the parameters were
allowed to vary between 0.5× and 1.5× their nominal value. For
this analysis, we found that 24.8% of parameters produced unsta-
ble fixed points, 43.2% produced stable homogeneous states,
13.2% produced stochastic Turing patterns, and 18.8% produced
Turing patterns. Thus, over this arbitrarily large range of param-
eters, pattern formation occurs only 18.8% of the time in the
absence of stochasticity but 32% of the time when stochasticity is
included. By including stochasticity, the range in which patterns
can form has been increased by 70%.

Discussion
Alternative Hypotheses. Now, we consider alternative hypothe-
ses to our claim that the theory of stochastic Turing patterns
explains our experimental observations. We consider the dura-
tion and dynamics of our pattern formation experiments. One
may expect to observe early events in Turing pattern formation,
such as splitting of clusters or increases in intercluster distances.
These processes may be, in fact, be taking place but may be dif-
ficult to observe due to weak reporter expression in the earlier
stages. In addition, we must consider the limited duration of our
experiments and the possibility that, theoretically, longer obser-
vations may result in different patterns if nonlinear processes
eventually began to dominate dynamics. Indeed, we do not feed
fresh nutrients to sustain the system for extremely long dura-
tions. However, as confirmed by analysis of the dynamics in SI
Appendix, Fig. S12, cluster size growth and spacing between clus-
ters appear to be stabilizing toward the end of the experiment. In
addition, domains are neither created nor destroyed in the later
time periods. Essentially, it appears that the patterns are close to
stabilizing within the 32-h observation period.

Another alternative hypothesis is that cell growth dynamics
primarily drive the observed pattern formation. Our control
experiments with mixtures of red and green cell populations (SI
Appendix, Fig. S9) along with our bistable switch control (SI
Appendix, Fig. S10) suggest that cell growth does not explain
our patterns. Moreover, our ability to tune pattern character-
istics offers support for the fact that our patterns are not a
simple consequence of natural biofilm growth morphologies but
rather, are driven by our genetic circuit. However, growth may
indeed impact regularity and may likely explain the fact that our
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experimental patterns are less regular than those observed in
our stochastic models (Fig. 3F). Indeed, future experiments to
show different classes of patterns (e.g., labyrinth patterns) would
offer further support, but collectively, our experiments strongly
support our hypothesis that a Turing mechanism driven by our
genetic circuit explains our observed patterns.

Summary of Evidence for Stochastic Turing Patterns. We summa-
rize our evidence for showing stochastic Turing patterns and not
showing amplification of random noise as follows. Our control
experiments with mixtures of red and green cells (Fig. 2B and
SI Appendix, Fig. S9) along with a bistable switch (SI Appendix,
Fig. S10) did not produce the patterns that we observe with our
genetic circuit (Fig. 2A). Our ability to tune pattern character-
istics offers further support that pattern formation is driven by
our genetic circuit. In addition to our experimental controls, we
identify patterns in the stochastic model but not in the deter-
ministic model of our system for the experimentally observed
ratio of diffusion rates (Fig. 3F). These model patterns resem-
ble the experimentally observed patterns in real space, exhibit
no peaks in the 2DFT (SI Appendix, Figs. S13 and S20), and
recapitulate the observed trend with IPTG variation. Analyses
of our experimental data are also in accord with the theory
of stochastic Turing patterns. The exponents in the tails of
the experimental radial power spectra agree with theoretical
predictions (Fig. 4B and SI Appendix, Fig. S13). In addition,
although spatial regularity is weak, we observe a radial spectral
peak for our experimental patterns (Fig. 4B and SI Appendix,
Fig. S13), indicating a characteristic length scale. Furthermore,
exploration of the large parameter space of the stochastic model
indicates that the experimental parameters are most likely to
be in the regime where only stochastic patterns can form (SI
Appendix, section 8). Collectively, this body of evidence suggests
that our experiments indeed exhibit stochastic Turing pattern
formation.

Materials and Methods
Strains and Conditions. Our patterning system was constructed using two
plasmids that correspond to the upper and lower portions of the cir-
cuit diagram in Fig. 1B: pFNK512 and pFNK806 in Fig. 2A and pFNK512
and pFNK804lacOlacI in Fig. 3. The two-color bistable toggle switch plas-
mid pTOG-1 was constructed from plasmid pIKE-107. All plasmids were

constructed using standard cloning and DNA recombination techniques.
Plasmid construction details are described here and in SI Appendix, section
2. Escherichia coli strain MG1655 was used for all experiments.

Code Availability. Custom code used in this manuscript is currently avail-
able at https://www.dropbox.com/sh/di3hbaaubx5qd0q/AADpSOMfJtm F
lEDRFoch0sa?dl=0.

Experimental Procedure. Cells harboring appropriate plasmids were initially
grown in LB liquid media with corresponding antibiotics at 30 ◦C until
OD at 600 nm was reached 0.1− 0.3. Cells were then concentrated and
resuspended in M9 media with appropriate antibiotics (29); 0.5 mL of con-
centrated cell solutions (OD600 = 2.0) were poured onto a 2% M9 agar plate
(60× 15-mm petri dish) to form a cellular lawn. Plates were incubated at
30 oC, and fluorescence images were captured periodically. To examine the
single-cell fluorescence evolution of toggle switch cell populations, we per-
formed flow cytometry at the beginning of the experiment (0 h) and the
end of the experiment (24 h).

Data Analysis. Fluorescence density plots, power spectrum of green fluo-
rescence, averaged green fluorescence, total area of red spots, collectivity
metric, and Moran’s I were all computed by analyzing the experimental
time-lapse microscopy data with custom Matlab software.

Mathematical Modeling. The patterning system was simulated by numeri-
cally integrating differential equations using in house-developed C soft-
ware. We also developed stochastic spatiotemporal models using a hybrid
stochastic simulation algorithm (30). SI Appendix has details about the
models and the simulation environments.

Note Added in Proof. After the completion and acceptance of this work, an
independent observation of stochastic Turing patterns in the cyanobacteria
colonies of Anabaena sp. was reported (31).
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1. System design

Turing-type pattern formation is based on short range activation and long range inhibition in a system of interacting “morphogen” species.

As shown by Gierer and Meinhardt, one short range, dissipative “activator” morphogen must be autocatalytic, and there are two general

possibilities for the longer range morphogen (1). In one type of system, the longer range species inhibits the activator. Alternatively, the

longer range species may serve as a substrate necessary for catalysis of the activator, and the long range inhibition effectively occurs

through depletion of this substrate. Implementing Turing pattern formation in cells requires two non-interacting intercellular signaling

pathways such that one signal serves as the “activator,” while the other serves as either the “inhibitor” or “substrate.” We chose to use

elements from the Las and Rhl quorum sensing systems of Pseudomonas aeruginosa, such that A3OC12HSL is effectively the “activator”

and IC4HSL is the “inhibitor” (Fig. S1a). Evidence suggested that certain promoters in P. aeruginosa respond specifically to either

IC4HSL/RhlR or A3OC12HSL/LasR (2–4). These systems were also appealing due to the different diffusion properties of the A3OC12HSL

and IC4HSL signal molecules (5). We explore these signal specificity and diffusion aspects in detail in later sections.

Designing complex multicellular systems such as a Turing pattern formation system requires the use of computational modeling.

Many more reactions are necessary for a biological implementation than for a simple chemical implementation, as the activator and

inhibitor do not directly interact. Rather, the system in Figure S1a must be implemented through several signal-protein, protein-protein,

and protein-DNA interactions. Due to the number of reactions and of different design variations possible, computational modeling is

critical for guiding the translation of the abstract design in Figure S1a into a genetic network.

As a starting point, we explored the genetic network design shown in Figure S1b. In this system, A3OC12HSL binds LasR and activates

two different p(Las)-OR1 promoters that express lasI and rhlI. Since LasI catalyzes A3OC12HSL synthesis, A3OC12HSL is effectively

autocatalytic. Similarly, since RhlI catalyzes synthesis of IC4HSL, the A3OC12HSL activator also activates the IC4HSL inhibitor. IC4HSL

binds RhlR and activates the p(Rhl) promoter, which expresses the λ phage CI repressor. CI represses the two p(Las)-OR1 promoters

and thus inhibits further production of A3OC12HSL and IC4HSL. CI also represses the p(Rhl)-OR1 promoter. We developed a detailed

model of this system and confirmed through linear stability analysis that Turing instabilities could be achieved for certain parameter sets,

and also confirmed through spatial simulations that patterns could form (6).

We then proceeded to consider design modifications that could potentially result in more robust patterning. One of the overall

design goals was to create a network enriched for Turing instabilities but simple enough to physically construct and tune. In order to

increase the chances of finding parameter sets with Turing instabilities without making the system much more complex, we developed

code to perform stability analysis on random parameter sets for different design variations. As shown in Figure S2a, these alternative

implementations had CI OR1 binding domains in different combinations of promoters, and some expressed a A3OC12HSL degrading

acylase from the p(Rhl) promoter (7). Equations 1-27 were used to model the design variations, and kinetic rates were chosen according

to Tables S1-S3. This model explicitly captures production and decay of mRNA, production and decay of proteins, and binding and

dissociation of AHL and R-proteins. However, quasi steady state approximations were used for protein-DNA interactions. As found by

other synthetic biology studies (8), detailed models of this nature can be important for capturing delays that impact system function.
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∂mrnalasr
∂ t

= kXSCRIBE_LASR ∗PCOPY ∗hill_ci_lasr

− kDEC_MRNA ∗mrnalasr [1]

∂mrnarhli
∂ t

= kXSCRIBE_QSCLAS1 ∗PCOPY ∗hill_activ_qsclas1∗hill_ci_qsclas1

− kDEC_MRNA ∗mrnarhli [2]

∂ lasr
∂ t

= kXLAT E_LASR ∗mrnalasr

− kBIND_LASR_A ∗ lasr ∗A

+ kDIS_LASR_A ∗ lasr_A

− kDEC_LASR ∗ lasr [3]

∂ rhli
∂ t

= kXLAT E_RHLI ∗mrnarhli

− kDEC_RHLI ∗ rhli [4]

∂ lasr_A
∂ t

= kBIND_LASR_A ∗ lasr ∗A

− kDIS_LASR_A ∗ lasr_A

− kDEC_LASR_A ∗ lasr_A [5]

∂A
∂ t

= kSY NT H_A ∗ lasi

− kBIND_LASR_A ∗ lasr ∗A

+ kDIS_LASR_A ∗ lasr_A

− kBIND_RHLR_A ∗ rhlr ∗A

+ kDIS_RHLR_A ∗ rhlr_A

− kBIND_ACY LASE ∗acylase∗A

− kDEC_A ∗A

+ kDIFFUSE_A ∗∇
2A [6]

∂ I
∂ t

= kSY NT H_I ∗ rhli

− kBIND_RHLR_I ∗ rhlr ∗ I

+ kDIS_RHLR_I ∗ rhlr_I

− kDEC_I ∗ I

+ kDIFFUSE_I∇
2I [7]

∂mrnarhlr
∂ t

= kXSCRIBE_RHLR ∗PCOPY ∗hill_ci_rhlr

− kDEC_MRNA ∗mrnarhlr [8]

∂mrnaci
∂ t

= kXSCRIBE_QSCRHL ∗PCOPY ∗hill_activ_qscrhl ∗hill_ci_qscrhl

− kDEC_MRNA ∗mrnaci [9]

∂ rhlr
∂ t

= kXLAT E_RHLR ∗mrnarhlr
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− kBIND_RHLR_I ∗ rhlr ∗ I

+ kDIS_RHLR_I ∗ rhlr_I

− kBIND_RHLR_A ∗ rhlr ∗A

+ kDIS_RHLR_A ∗ rhlr_A

− kDEC_RHLR ∗ rhlr [10]

∂ci
∂ t

= kXLAT E_CI ∗mrnaci

− kDEC_CI ∗ ci [11]

∂ rhlr_I
∂ t

= kBIND_RHLR_I ∗ rhlr ∗ I

− kDIS_RHLR_I ∗ rhlr_I

− kDEC_RHLR_I ∗ rhlr_I [12]

∂mrnalasi
∂ t

= kXSCRIBE_QSCLAS2 ∗PCOPY ∗hill_activ_qsclas2∗hill_ci_qsclas2

− kDEC_MRNA ∗mrnalasi [13]

∂ lasi
∂ t

= kXLAT E_LASI ∗mrnalasi

− kDEC_LASI ∗ lasi [14]

∂mrnaacylase
∂ t

= kXSCRIBE_QSCRHL2 ∗PCOPY ∗hill_activ_qscrhl2∗hill_ci_qscrhl2

− kDEC_MRNA ∗mrnacylase [15]

∂acylase
∂ t

= kXLAT E_ACY LASE ∗mrnaacylase

− kDEC_acylase ∗acylase [16]

∂ rhlr_A
∂ t

= kBIND_RHLR_A ∗ rhlr ∗A

− kDIS_RHLR_A ∗ rhlr_A [17]

hill_ci_lasr = 1− ci2

ci2 + k2
HALFMAX_CI_LASR

[18]

hill_ci_rhlr = 1− ci2

ci2 + k2
HALFMAX_CI_RHLR

[19]

hill_activ_qsclas1 =
lasr_A2

lasr_A2 + k2
HALFMAX_LAS

+ kBASAL_QSCLAS1 [20]

hill_ci_qsclas1 = 1− ci2

ci2 + k2
HALFMAX_CI_QSCLAS1

[21]

hill_activ_qscrhl =
rhlr_I2

rhlr_I2 + k2
HALFMAX_RHL

+ kBASAL_QSCRHL [22]

hill_activ_qscrhl2 =
rhlr_I2

rhlr_I2 + k2
HALFMAX_RHL2

+ kBASAL_QSCRHL2 [23]

hill_ci_qscrhl = 1− ci2

ci2 + k2
HALFMAX_CI_QSCRHL

[24]
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Table S1. Kinetic constants used for exploring design variations depicted in Figure S2a. Las promoter 1 is the promoter expressing

rhlI, while Las promoter 2 refers to a separate Las promoter expressing lasI. Rhl promoter 1 is the promoter expressing cI, while Rhl

promoter 2 refers to a separate Rhl promoter expressing acylase. RAND(a,b) is a number randomly selected from the uniform interval

[a,b], and bitn is the nth bit of the binary representation of the network number. Tables S2-S3 contain the rest of the parameters for this

system.

kXSCRIBE_RHLR transcription rate of rhlR 0.025 µM·hs−1

kXSCRIBE_LASR transcription rate of lasR 0.025 µM·hs−1

kXSCRIBE_QSCRHL Rhl promoter transcription rate 0.025 µM·hs−1

kXSCRIBE_QSCLAS1 activated Las promoter 1 transcription rate 0.025 µM·hs−1

kXSCRIBE_QSCLAS2 activated Las promoter 2 transcription rate 0.025 µM·hs−1

kBASAL_QSCRHL basal transcription rate for Rhl promoter 1 0.001 µM·hs−1

kBASAL_QSCRHL2 basal transcription rate for Rhl promoter 2 0.001 µM·hs−1

kBASAL_QSCLAS1 basal transcription rate for Las promoter 1 0.001 µM·hs−1

kBASAL_QSCLAS2 basal transcription rate for Las promoter 2 0.001 µM·hs−1

kXLAT E_RHLR translation rate of RhlR RAND(0.25,25) hs−1

kXLAT E_LASR translation rate of LasR RAND(0.25,25) hs−1

kXLAT E_CI translation rate of CI RAND(0.25,25) hs−1

kXLAT E_LASI translation rate of LasI RAND(0.25,25) hs−1

kXLAT E_RHLI translation rate of RhlR RAND(0.25,25) hs−1

kXLAT E_ACY LASE translation rate of acylase bit6 ·RAND(0.25,25) hs−1

kHALFMAX_RHL Concentration of RhlR/I complex giving half-maximal Rhl promoter 1 acti-

vation

1 µM

kHALFMAX_RHL2 Concentration of RhlR/I complex giving half-maximal Rhl promoter 2 acti-

vation

1 µM

kHALFMAX_LAS Concentration of LasR/A complex giving half-maximal Las promoter acti-

vation

0.01 µM

hill_ci_qscrhl2 = 1− ci2

ci2 + k2
HALFMAX_CI_QSCRHL2

[25]

hill_activ_qsclas2 =
lasr_A2

lasr_A2 + k2
HALFMAX_LAS

+ kBASAL_QSCLAS2 [26]

hill_ci_qsclas2 = 1− ci2

ci2 + k2
HALFMAX_CI_QSCLAS2

[27]

In the simulations, each different implementation corresponded to a certain network number. A promoter contained an OR1 domain

if the corresponding bit in the binary representation of the network number was a 1 (Figure S2a). Likewise, acylase was expressed only

if bit6 of the binary representation of the network number was 1. For example, 5610 = 01110002, so Network 56 has an OR1 site in the

p(Las)-OR1 promoters expressing LasI and RhlI and in the promoter expressing RhlR since bit3, bit4, and bit5 are all 1. Figure S2b

shows the number of parameter sets with Turing instabilities found for each different network. Although Network 106 was most enriched

for Turing instabilities, this network requires acylase expression. Networks 56 and 57, depicted in Figure S1c, do not require acylase

expression and were ultimately chosen instead for the sake of simplicity.

Having chosen a network architecture, we then investigated the role of key parameters in determining the existance of Turing

instabilities(6). Of particular importance, we found that sensitive responses of the p(Las)-OR1 promoter were important for achieving

Turing instabilities. Since the results suggested that the Hill coefficient of p(Las) activation must be greater than 1 for pattern formation, we
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Table S2. Kinetic constants used for exploring design variations, continued from Table S1. The remaining constants are in Table S3.

kHALFMAX_CI_QSCLAS1 Concentration of CI giving half-maximal Las promoter 1

repression

RAND(0.007796,0.7796)/bit5 µM

kHALFMAX_CI_QSCLAS2 Concentration of CI giving half-maximal Las promoter 2

repression

RAND(0.007796,0.7796)/bit4 µM

kHALFMAX_CI_QSCRHL Concentration of CI giving half-maximal Rhl promoter 1 re-

pression

RAND(0.007796,0.7796)/bit3 µM

kHALFMAX_CI_QSCRHL2 Concentration of CI giving half-maximal Rhl promoter 2 re-

pression

RAND(0.007796,0.7796)/bit0 µM

kHALFMAX_CI_RHLR Concentration of CI giving half-maximal repression of RhlR RAND(0.007796,0.7796)/bit3 µM

kHALFMAX_CI_LASR Concentration of CI giving half-maximal repression of

LasR

RAND(0.007796,0.7796)/bit1 µM

kDEC_RHLR decay rate of RhlR 0.029 hs−1

kDEC_LASR decay rate of LasR 0.029 hs−1

kDEC_CI decay rate of CI 0.116 hs−1

kDEC_LASI decay rate of LasI 0.116 hs−1

kDEC_RHLI decay rate of RhlI 0.116 hs−1

kDEC_ACY LASE decay rate of acylase 0.116 hs−1

kDEC_MRNA decay rate of mRNA 1.16 hs−1

kDEC_I decay rate of IC4HSL 0.002 hs−1

kDEC_A decay rate of A3OC12HSL 0.002 hs−1

kDEC_RHLR_I decay rate of RhlR/IC4HSL complex 0.029 hs−1

kDEC_LASR_A decay rate of LasR/A3OC12HSL complex 0.029 hs−1

Table S3. Kinetic constants used for exploring design variations, continued from Tables S1-S2.

DI IC4HSL diffusion rate 0.003 gridpoints2·hs−1

DA A3OC12HSL diffusion rate 0.0003 gridpoints2·hs−1

kBIND_RHLR_I binding rate of RhlR and IC4HSL 0.1 µM−1hs−1

kBIND_RHLR_A binding rate of RhlR and A3OC12HSL 0.1 µM−1hs−1

kBIND_LASR_A binding rate of LasR and A3OC12HSL 0.1 µM−1hs−1

kBIND_ACY LASE destruction rate of A3OC12HSL by acylase 0.0023 µM−1hs−1

kDIS_RHLR_I dissociation of RhlR/IC4HSL complex 1 hs−1

kDIS_RHLR_A dissociation of RhlR/A3OC12HSL complex 1 hs−1

kDIS_LASR_A dissociation of LasR/A3OC12HSL complex 1 hs−1

kSY NT H_I synthesis rate of IC4HSL (9) 0.5 hs−1

kSY NT H_A synthesis rate of A3OC12HSL (9) 0.5 hs−1

PCOPY Plasmid copy number 10
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considered placing LasR under the control of a p(Las)-OR1 promoter. Starting even with a p(Las) promoter that responds hyperbolically

to A3OC12HSL (Hill coefficient of 1), an ultrasensitive reporter response can be engineered by placing lasR under control of the p(Las)

promoter. This can be demonstrated as follows. Suppose a p(Las) promoter regulates both LasR and a reporter. It can be assumed that

the steady state reporter level is proportional to the steady state LasR level. The differential equation for LasR is given in Equation 28.

∂L
∂ t

=
α0 +α1(KSL)m

1+(KSL)m −dL [28]

Here, α0 is the basal expression rate and α1 is the maximum rate of expression from the activated promoter. K is the inverse of the

level of A3OC12HSL/LasR that gives rise to promoter expression at a rate that is halfway between basal and maximal expression. S is the

A3OC12HSL signal, d is the LasR decay rate, and m is the Hill coefficient of p(Las) activation by A3OC12HSL/LasR.

One commonly used metric for measuring sensitivity is the cooperativity index RC (10, 11), defined for this system as the ratio of S

necessary for 90% promoter activation to S necessary for 10% promoter activation. This corresponds to Equations 29-33.

L90 = 0.1α0 +0.9α1 [29]

L10 = 0.9α0 +0.1α1 [30]

S90 =
1

KL90

m

√
dL90−α0

α1−dL90
[31]

S10 =
1

KL10

m

√
dL10−α0

α1−dL10
[32]

RC =
S90

S10
[33]

For a p(Las) promoter that has a Hill coefficient of 1 when LasR is constitutively expressed, L is given by Equation 34, and the

cooperativity index is given by Equation 35. For α1 � α0, the cooperativity index is almost 9. Although Equation 34 is not a Hill

equation, a cooperativity index of 9 would correspond to a Hill coefficient of 2. Figure S3 illustrates the enhancement in sensitivity

gained by placing LasR under control of p(Las). Reporter output versus A3OC12HSL is shown for constitutive LasR expression and for

LasR under control of p(Las) using the following parameter set: α0 = 0.01, α1 = 1, K = 0.5, d = 1, m = 1.

L =
α1KS−d +

√
(α1KS−d)2 +4dKα0S

2dKS
[34]

RC =
81(9α0 +α1)

α0 +9α1
[35]

Equation 34 was used to represent reporter concentration for the case of LasR under control of p(Las). This was done because the

steady state reporter level is proportional to the level of LasR, as mentioned previously. For the case of constitutive LasR expression, the

Equation 36 was used to represent steady state reporter concentration.

reporterLasRconstit =
α0 +α1

Kα1S
d

m

d(1+ Kα1S
d

m
)

[36]

Having modified our design to incorporate positive feedback on LasR, we arrived at the final design shown in Fig. S1c and Fig. 1 of

the main text. We then proceeded to construct the system in a modular fashion.

2. System construction

Each genetic part for our system was characterized prior to assembly into devices. Table S4 describes provides references to characteriza-

tions of the constructs used for this study. For many of these components, standardized BioBrick components are available. Devices

were assembled from these genetic parts in a modular fashion (6). We now describe the DNA constructs for our final system.
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Table S4. Sources of genetic parts.

Genetic Part References

lasI(LVA) (6, 12), BBa_C0078

rhlI (6, 12), BBa_C0170

lasR (6, 12), BBa_C0179

rhlR-I124F (6)

cI(LVA) (13–15), BBa_C0051

lacI BBa_I732100

GFP(LVA) (16), BBa_K082003

DsRed-Express Clontech

λP(R−O1) (6)

pLas-OR1 (6), BBa_I14016

pRhl-LacO this study

A. Plasmid Construction. Our patterning circuit design was implemented by partitioning the system into two plasmids, namely

pFNK-512 (Fig. S4a) and pFNK-804-LacO-LacI (Fig. S4b), corresponding to the upper and lower parts of the circuit diagram in Fig. 1b

of the main text. pFNK-512 was constructed by inserting two identical divergent copies of the hybrid promoter PLas−OR1 as well as the

genes lasI(LVA), rhlI, dsRed, and lasR into the pPROTet.E vector (ColE1 ori and Cm resistance, Clontech). The promoter PLas−OR1 was

constructed by fusing a mutant CI binding domain OR1-mut4 (17) to a wildtype Las promoter in P. aeruginosa (PAO1 strain) (6, 18).

The hybrid promoter sequence is shown in Fig. S4g. This approach for constructing promoters that are activated by quorum sensing

signals, yet repressed by repressors such as cI has been previously described (13). A Las regulatory gene lasR was placed downstream

of one copy of the hybrid promoter. A3OC12HSL and IC4HSL synthase genes lasI(LVA) and rhlI were inserted downstream of the other

PLas−OR1 promoter followed by a red fluorescence reporter gene dsRed-exp (from Clontech plasmid pDsRed-Exp). RBSII was used for

all ribosome binding sites in this plasmid (17).

pFNK-804-LacO-LacI was constructed starting from the pPROLar.A vector (ColE1 ori and Kan resistance, Clontech) and integrating

the promoters pLacIq, λP(R−O1), and PRhl−lacO and the genes lacI, rhlR, cI, and GFP(LVA) (19). The constitutive promoter pLacIq,

ribosome binding site RBSII, and lacI gene were inserted into the vector for constitutive expression of LacI (17). A mutant rhlR (6)

was placed under control of a CI-regulated promoter λP(R−O1) and the ribosome binding site RBSH (6, 18, 19). The rhlR mutant,

RhlR-I124F was selected by directed evolution for its response to lower concentrations of IC4HSL than the wildtype (6). Hybrid promoter

PRhl−lacO was constructed by adding a LacO operator binding site to a wildtype RhlR promoter in P. aeruginosa (Fig. S4g). Genes cI

and GFP(LVA) were placed under transcriptional control of the hybrid promoter PRhl−lacO. Ribosome binding sites RBSH and RBSII

were used for cI and GFP respectively (17, 19).

Plasmid pFNK-806 (Fig. S4c) was derived from pFNK-804-LacO-LacI. It was constructed by replacing promoter λP(R−O1) in pFNK-

804-LacO-LacI with the constitutive promoter pLacIq, and replacing the corresponding ribosome binding site RBSII with RBSG (17).

This provided a plasmid without the inhibition of RhlR production by CI.

Plasmid pTOG-1 (Fig. S4d was created from toggle switch plasmid pIKE-107 (ColE1 ori and Amp resistance) (20). We inserted a

red fluorescence gene mCherry into the original plasmid downstream of the lacI gene that is regulated by promoter pLtetO−1. RBSII was

used as the ribosome binding site for mCherry (17).

Plasmids pINV-5 and pASK-201 were used for the negative controls in Fig. 2b in the main text. The pINV-5 plasmid expresses

lacI from the constitutive promoter pLacIq and expresses GFP(LVA) from the LacI-regulated promoter pLac on a p15A plasmid with
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kanamycin resistance (Fig. S4e) (21). Plasmid pASK-201 is identical to pINV-5 except that gfp(lva) was replaced by a red fluorescence

gene dsRed-Exp (Fig. S4f).

All plasmids were constructed using standard molecular biology cloning techniques. Restriction enzymes were obtained from New

England BioLabs Inc, and PCR primers were ordered from Integrated DNA Technologies, Inc.

3. Diffusion experiments and mathematical modeling

A requirement for Turing pattern formation is two morphogens that have distinct diffusion rates. Specifically, the activator species

A3OC12HSL should diffuse more slowly than the inhibitor IC4HSL. To quantify the difference between the diffusion rates, we performed

dosage response experiments, solid-phase diffusion experiments, mathematical modeling, and parameter estimation.

AHL response threshold. To conduct the diffusion assays, we first needed to calibrate the morphogen response thresholds. We

individually transformed plasmids pFNK202-qsc119 and pFNK503-qscrsaL into strain MG1655 to serve as reporter cells for IC4HSL

and A3OC12HSL respectively (12). pFNK202-qsc119 is a IC4HSL reporter construct that expresses RhlR constitutively and expresses a

GFP(LVA) reporter from the p(Rhl) promoter. pFNK503-qscrsaL is a A3OC12HSL reporter construct that expresses LasR constitutively

and expresses a GFP(LVA) reporter from the p(Las) promoter (12). Reporter cells inoculated from overnight cultures were grown

in M9 media for 3 hours and then induced with various levels of AHL for 6 hours. Single cell fluorescence data were subsequently

collected using a Beckman Coulter Altra flow cytometer equipped with a 488-nm argon excitation laser and a 515-545 nm emission filter.

Figure S5 shows the dosage response curves for IC4HSL and A3OC12HSL receiver cells. The half activation thresholds are approximately

3×10−3 µM for A3OC12HSL and 3 µM for IC4HSL. This information allows us to correlate fluorescence activation with AHL concentration

in our solid-phase diffusion experiments.

Diffusion experiments. We performed solid-phase diffusion experiments in 2% M9 agar plates as described in Methods. Reporter

cells picked from single colonies were cultured in liquid LB media overnight and diluted 1000:1 into fresh media the next day. When

culture OD’s reached 0.1−0.3, cells were concentrated and resuspended in M9 media to final OD of 2.0. 1.5 mL of the concentrated

cells were plated onto 80×15 mm M9 agar Petri dishes for the diffusion experiments. To correspond with the environmental conditions

of our patterning experiments, plates with the cells were first incubated at 30 oC for 12 hours. Afterwards, 3 µL AHL droplets with

an appropriate concentration (10 mM for IC4HSL, and 0.01 mM for A3OC12HSL) were added at the center of the plates for each type of

reporter cell. We chose these concentrations based on the AHL’s half activation thresholds so that the AHL’s activate cells around the

center but not close to the edge of the Petri dishes. Fluorescence images were taken at hours 0, 2.5, 5, and 8.75 using a Bio-rad Molecular

Imager ChemiDoc XRS+ System. An XcitaBlue conversion screen was used for capturing GFP intensities.

Every image obtained from this experiment has a fluorescence radial gradient centered around the position where the AHL droplet

was added. Figure S6a-b shows representative fluorescence intensity lines crossing the image centers for different time points for the two

AHL diffusion experiments. The image exposure times for IC4HSL and A3OC12HSL are 0.1 s and 0.2 s respectively. Raw images were

processed to remove exposure bias in the field of view by background subtraction of reference frames.

We then conducted experiments to ensure that the diffusion of IC4HSL and A3OC12HSL did not drastically change due to potential

differences in biofilm characteristics over many hours of incubation. Specifically, the diffusion experiment was again carried out, varying

the initial incubation time before AHL addition. Images were then captured following 0, 2.5, 5, and 8 hours of AHL exposure (Fig. S7).

Modeling and parameter estimation. To estimate experimental diffusion coefficients for the signaling species, we developed the

following reaction-diffusion model:

∂S
∂ t

= Ds∇
2S− γsS [37]

∂F
∂ t

= α f N
S

Ks +S
− γ f F [38]
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∂N
∂ t

= αnN (1−N/Nl) [39]

This model captures the behavior of the reporter cells harboring reporter constructs pFNK202-qsc119 and pFNK503-qscrsaL. In this

model, S, F , and N refer to AHL concentration, fluorescence reporter concentration, and cell density respectively. γs and γ f are the

degradation rates for AHL and the fluorescence reporter, Ds is the AHL diffusion coefficient, Ks is the AHL half-activation threshold, α f

is the fluorescence reporter production rate and αn is the cell growth rate. In this model, cell density is assumed to grow logistically (22).

According to our experimental setup, the initial conditions of the equations include F(x, t)|t=0 = 0, N(x, t)|t=0 = N0 and S(x, t)|t=0 =

S0H[x+ x0](1−H[x− x0]), where H[x] is the Heaviside step function and x0 is the radius of the initial AHL droplet. The signal’s initial

condition was chosen as above to simulate the localized addition of AHL droplets onto the plate. The boundary conditions of the

system are ∂S/∂x|x=±4 = 0, ∂F/∂x|x=±4 = 0, and ∂N/∂x|x=±4 = 0. Since the fluorescence observed in our experiment consists of the

fluorescence reporter and cell autofluorescence, the total fluorescence is indicated by Ftotal = F +β f N.

From the literature (23), we use degradation rates of γs=c12 = 0.002 hr−1 for A3OC12HSL and γs=c4 = 0.02 hr−1 for IC4HSL. The

degradation rate of the fluorescent protein is γ f = 0.04 hr−1. We choose β f = 0.5 for IC4HSL (0.1 s exposure time) and β f = 1.0 for

A3OC12HSL (0.2 s exposure time). From the dosage response experiment, we obtained half activation thresholds for the two AHLs of

Ks=c12 = 0.003 µM and Ks=c4 = 3 µM. By parameter estimation using the fluorescence intensities of cells far away from the center in

the model with the experimental setup, we obtained a cellular growth rate of αn = 0.15 hr−1 and saturation cell density of Nl = 5.0

(N0 = 1.0). Then, by parameter estimation of the fluorescence wave profile over time, we estimate the diffusion coefficients to be

Dc12 = 0.003 cm2/hr for A3OC12HSL and Dc4 = 0.065 cm2/hr for IC4HSL. The corresponding simulation results are shown in Fig. S6c-d.

These experiments suggest that the diffusion coefficient for the activator is approximately 21.6 fold slower than that of the inhibitor,

qualitatively consistent with a previous study (24). One possible explanation for why the ratio of diffusion rates is higher than expected

based on molecular weight differences alone is that the hydrophobic nature of A3OC12HSL causes it to partition in the cell membrane,

thus essentially slowing down its diffusion from cell to cell (24).

4. Signal Specificity and Competitive Inhibition

An initial design challenge was to identify sufficiently non-interacting cell-cell signaling systems. Our choice of harnessing the

Pseudomonas aeruginosa Rhl and Las quorum sensing systems was based on the potential for achieving specific responses to two

different signals in the same cell (3). In P. aeruginosa, A3OC12HSL and IC4HSL are the two signaling molecules of the Las and Rhl

quorum sensing pathways: A3OC12HSL and LasR are responsible for activation of the pLas promoter while IC4HSL and RhlR regulate the

pRhl promoter. Many promoters in P. aeruginosa are quorum sensing controlled and exhibit varying degrees of specificity to A3OC12HSL

and/or IC4HSL. Therefore, we first identified a Rhl promoter, the rhlAB promoter, that specifically responded to IC4HSL/RhlR and a

Las promoter, the rsaL promoter, that specifically responded A3OC12HSL/LasR (6). As an example demonstration of signal specificity,

we used E. coli cells that harbor a plasmid (pFNK202-qsc119) with constitutively expressed RhlR and a pRhl promoter regulating a

GFP(LVA) reporter (12). We performed crosstalk experiments by inducing the engineered cells with different combinations of the AHLs.

Our experiments along with previous results (12) confirm that the Rhl pathway is activated by IC4HSL but not by A3OC12HSL in the

presence of RhlR (Fig. S8a).

In spite of the specific response of our Las and Rhl promoters to A3OC12HSL/LasR and IC4HSL/RhlR, an important interaction still

exists. Namely, A3OC12HSL can competitively bind RhlR. To explore the effects of this competitive binding, we induced rhl receiver cells

with different levels of A3OC12HSL (0 to 30 µM) while IC4HSL was kept high (3 µM). Figure S8b shows that the fluorescence level of

single cells monotonically decreases with A3OC12HSL. This experiment suggests that A3OC12HSL binds RhlR, the regulatory protein for

IC4HSL, but the corresponding complex does not activate the promoter pRhl. The competitive binding of A3OC12HSL to RhlR thus reduces

RhlR/IC4HSL complex formation and, as a result, inhibits pRhl activation from IC4HSL. In wildtype P. aeruginosa, this competitive

inhibition may provide an alternative mechanism for temporal control of the activation of transcription factors by delaying the induction

David Karig et al. 10.1073/pnas.XXXXXXXXXX 9 of 48



of genes regulated by the rhl quorum sensing pathway (25). In our system, this inhibition attenuates GFP in the red fluorescent activator

regions.

5. Control Experiments and Pattern Characteristics

To demonstrate that our system exhibits stochastic Turing patterns, we showed that our patterns are not a result of the outward growth of

clusters of differentially colored cells. For this we first assayed the phenotypic behavior of lawns of cells that express fluorescent proteins

constitutively. As shown in Fig. 2b, when red and green fluorescent cells are grown separately or together, uniform fluorescent fields

develop. The difference between these control experiments and the emergent patterns is illustrated clearly in the red/green fluorescence

density plots (Fig. 2c). We further tested additional ratios of constitutively fluorescent green and red cells and again observed relatively

uniform fields of fluorescence (Fig. S9). These experiments demonstrate that, in our experimental setup, neither cell growth nor initial

spatial heterogeneity of cell density give rise to the large scale spatial patterns observed with the Turing cells.

Next, we tested whether observable patterns would emerge if individual cells autonomously made cell-fate decisions at some point

after plating. This would indicate that our system is not, in fact, generating emergent patterns. To address this question, we performed

another experiment with cells that harbor independent bistable green/red toggle switches (Fig. S10a) (20). For these switches, which

are essentially net positive feedback loops, IPTG induction results in expression of TetR/GFP, aTc induction results in expression of

LacI/RFP, and absence of inducer results in a ‘memory’ of the cells’ most recent state (at 30oC) (20). Co-induction with both inducers

gives rise to co-expression of all proteins; subsequent simultaneous removal of the inducers causes each cell to make an independent

quasi-random decision and enter one of the two stable states. To explore whether such an independent decision-making process results

in global pattern formation, we induced toggle cells with 3 µM IPTG and 0.3 µM aTc in liquid culture for 5 hours. Flow cytometry

analysis confirmed that after this initial incubation period, all cells in the population had roughly the same red/green fluorescence levels

(Fig. S10b). Co-induced cells were then plated onto Petri dishes lacking inducers (bistability condition) using the same technique as

the experiments above. The fluorescence fields after 24 hour incubation at 30 oC were uniform, showing no emergence of patterns

(Fig. S10d-f). However, flow cytometry analysis of cells scraped from the plate after 24 hours revealed that the initially homogeneous

cell population had bifurcated almost completely into two subpopulations, one with high GFP expression and the other with high RFP

expression (Fig. S10c). The toggle switch cell lawn maintained spatial homogeneity but individual cells settled into one of the two states,

suggesting that this autonomous quasi-random fate decision by individual cells does not lead to global spatial patterning.

Next we explored the robustness and structural stability of our results: specifically, whether and how changes in the levels of localized

interactions lead to different global outcomes. In our system, IPTG can be used to modulate the inhibitory efficiency of IC4HSL in

individual cells by affecting CI expression from PRhl−lacO, up to the threshold of toxicity. Our data show that mean GFP levels increase

sigmoidally with inducer concentration while the overall area of red spots decreases (Fig. 3b-c), correlating well with the results from

our mathematical model (Fig. 3d-g). To quantify changes in the spatial characteristics of the patterns in response to different IPTG

concentrations, we define a collectivity metric as follows:

Θ =
M

∑
i, j=1

σi, j, where σi, j =

1 if pixels i and j are in the same red spot

0 otherwise

where M is the total number of pixels in the image. Fig. 3b shows that in our experiments, the collectivity metric decreases approximately

9 fold as a function of IPTG, indicating that an increase in the inhibitory effect of IC4HSL in each individual cell results in reduced overall

global clustering. Moran’s I (26) is also plotted to illustrate how the spatial autocorrelation of an image decreases with IPTG (Fig. 3b,

inset), qualitatively consistent with the analysis of our simulated patterns (Supplementary Information, Fig. S11).Additionally, spots

become smaller due to IPTG induction as is visible in the microscope images in Fig. 3a.

We performed a 32-hour experiment to gain a better understanding of the dynamics of pattern emergence. A lawn of cells was

prepared as described in Methods, placed in a microscope chamber and incubated at 30 oC. Fluorescence images of the same region
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were captured once every 30 minutes. Figure S12 shows images at 4 hour intervals (0-, 4-, 8-, 12-, 16-, 20-, 24-, 28-, and 32-hour). There

is no fluorescence initially until hour 16 when tiny spots emerge. These tiny spots grow quickly and new spots continue appearing and

growing during the following few hours. By hour 24, spots have emerged with typical sizes much larger than that of a single cell. The

spot pattern remains roughly the same from hour 24 to hour 32. However, as our experimental system is fundamentally a dissipative

system, and we do not feed fresh nutrients, an eventual breakdown is inevitable.

We can also extract the characteristic scale of the pattern. To do this we found the centroid points of each clump of activator. We then

created a histogram of distances to to nearest neighboring centroids Figure S13f. From this plot we found that the average separation of

clumps is 45±11 µm. Additionally we can extract the distribution for sizes of the spots. We found the the average radius of the clump is

14 µm.

6. Moran’s I

Moran’s I was developed to measure spatial autocorrelation and indicates whether adjacent observations of the same phenomenon are

correlated. Moran’s I was proposed as follows (26)

I =
N

∑
N
i=1 ∑

N
j=1 wi j

∑
N
i=1 ∑

N
j=1 wi j(xi− x̄)(x j− x̄)

∑
N
i=1(xi− x̄)2

[40]

where N is the total number of pixels, x is the variable of interest (red fluorescence level here), x̄ is the mean of x, and wi j a weight matrix

of pixels. We employ a simple form of the weight matrix as follows: wi j = 1 if two pixels are directly adjacent and wi j = 0 otherwise.

Moran’s I values typically range from +1, representing complete positive spatial autocorrelation, to −1, corresponding to complete

negative spatial autocorrelation.

7. A deterministic reaction-diffusion model

The goal of this section is to see if a deterministic model can reproduce the principal features of the observed pattern. To this end, we use

order of magnitude estimates for parameters. Our synthetic system consists of biochemical reactions involving promoters, mRNA, and

proteins as well as signal diffusion, with rate constants that span multiple time-scales. To obtain a manageable model, we make the

following commonly used simplifying assumptions:

• Operator states of a promoter fluctuate much faster than protein degradation rates.

• mRNA half-life is much shorter than protein half-life.

These assumptions allow us to eliminate operator fluctuation and mRNA kinetics and model the system at the communication signals

and protein levels as

∂U
∂ t

= αuIu− γuU +Du∇
2U [41]

∂V
∂ t

= αvIv− γvV +Dv∇
2V [42]

∂ Iu

∂ t
= αiuF1(X1,C)− γiuIu [43]

∂ Iv

∂ t
= αivF1(X1,C)− γivIv [44]

∂C
∂ t

= αcF2(X2,L)− γcC [45]

where U and V are the concentrations of the two diffusible morphogens A3OC12HSL and IC4HSL, Iu and Iv are the concentrations of

corresponding AHL synthases, and C refers to CI.
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We model the hybrid promoters using the following Hill functions:

F1(X1,C) =
[1+ f1(

X1
Kd1

)θ1 ][1+ f−1
2 ( C

Kd2
)θ2 ]

[1+( X1
Kd1

)θ1 ][1+( C
Kd2

)θ2 ]
[46]

F2(X2,L) =
[1+ f3(

X2
Kd3

)θ3 ][1+ f−1
4 ( L

Kd4
)θ4 ]

[1+( X2
Kd3

)θ3 ][1+( L
Kd4

)θ4 ]
[47]

where F1(X1,C) and F2(X2,L) are the production rates of the promoters PLas−OR1and PRhl−lacO, X1 and X2 are the LasR-A3OC12HSL

complex and the RhlR-IC4HSL complex respectively, and L is the concentration of unbound LacI protein. We use the definitions

X1 = RuU [48]

X2 =
RvV

(1+U/Kc3)
[49]

L = λl

(
1+ f−1

6 (I/Kd6)
θ6

1+(I/Kd6)
θ6

)
[50]

where I is the IPTG concentration, Ru and Rv are the regulatory proteins LasR and RhlR:

Ru = λuIu [51]

Rv = λv

(
1+ f−1

5 (C/Kd5)
θ5

1+(C/Kd5)θ5

)
[52]

A summary of the variables used in our model is available in Table S5 and definitions of the rate constants in Tables S6-S7. Hill functions

employed in this model have a shared form of Y =
1+ f (X/K)θ

1+(X/K)θ , where X and Y correspond to the input and output of the function, K is

the dissociation constant, θ is the Hill coefficient and f is the fold change of Y upon full induction by X . For the measured values of
Dv
Du
≈ 21.6, deterministic patterns do not arise. We artificially increased this ratio to 100 and found that patterns did form with similar

attributes to the observed pattern, but also were more regular than the patterns observed in our experiment.

To study patterning using our model, we divide a cellular lawn into a mesoscopic M×M grid (M = 64 in our simulation). As is

common for deterministic Turing simulations, we introduce small variation into the initial concentrations of the molecules for initial

symmetry breaking. All the variables (species) were initially assigned low values (random values obeying a Gaussian distribution that

has a mean of 1.0 and a variance of 0.05) to approximate the initial condition in our experimental setup. We numerically integrate the

partial differential equations over time to simulate spontaneous pattern formation. We also perform numerical simulations with a range of

IPTG concentrations (from 10−6 to 10−2 M) to explore modulation of pattern formation. Sizes of simulated patterns are determined in

terms of relative fluorescence intensities rather than absolute values to match our image processing procedures for the experimental data.

8. A stochastic model

When the diffusion rate ratio is high enough to support pattern formation, our deterministic model correlates well with several

characteristics of our experimental observations including pattern modulation by inducer IPTG. However, the deterministically simulated

patterns have a uniform distribution of spot size, fluorescence intensity, and separation, whereas the experimental results display

large variability in these attributes. We developed a stochastic spatiotemporal model to improve the correlation with the experimental

observations. The patterning process is modeled with exactly the same biochemical reactions used in our deterministic model but

simulated stochastically using an efficient tau-leaping stochastic algorithm(27, 28). To speed up this large scale spatiotemporal simulation,

we employ a hybrid technique where all intracellular chemical reactions are stochastic but signal diffusion is deterministic since the

diffusion time scales are typically much faster than the intracellular reactions considered in our model.

To illustrate the behavior of each species in our pattern formation system (Table S5), we performed a spatial stochastic simulation

using the parameters depicted in Tables S6-S7. The top of Figure S16 shows A3OC12HSL and IC4HSL patterns produced in our stochastic

simulation using the parameters given in tables Tables S6-S7. The red line indicates the location of the cross-section used for all other
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dynamic variables. The bottom of Figure S16 shows cross-sectional slices of variables U (A3OC12HSL), V (IC4HSL), Iu (LasI), Iv (RhlI),

C (CI), Ru (LasR), Rv (RhlR), L (free LacI), X1 (LasR-A3OC12HSL complex), and X2 (RhlR-IC4HSL complex).

As seen in Figure S16, the concentrations of LasI, RhlI, and LasR are proportional to the A3OC12HSL activator. This is due to the fact

that these proteins are expressed from the A3OC12HSL activated PLas−OR1 promoter. Likewise, the LasR-A3OC12HSL complex is directly

proportional to A3OC12HSL concentrations. In addition, since RhlI catalyzes IC4HSL synthesis, IC4HSL is also directly proportional to

A3OC12HSL concentrations. However, since IC4HSL diffuses faster than A3OC12HSL, relatively high concentrations of IC4HSL are also

found in between the A3OC12HSL activation domains.

Interestingly, the RhlR-IC4HSL complex is inversely proportional to A3OC12HSL. In regions of high A3OC12HSL, A3OC12HSL compet-

itively binds RhlR, lowering the concentration of the RhlR-IC4HSL complex. However, as mentioned, IC4HSL concentrations remain

relatively high outside of the A3OC12HSL activation domains. Thus, RhlR-IC4HSL is highest in between the activation domains. Col-

lectively, this behavior results in green fluorescence (following the RhlR-IC4HSL complex concentration) surrounding red fluorescent

activation domains (following the LasR-A3OC12HSL complex concentration).

To characterize the stochastic simulation we calculated the distribution of spot sizes and spacing. We binarized the simulation

data shown in Figure S17 and determined locations of the centroids of spots and the areas of the spots. The spacing is calculated by

finding the distance to the nearest neighboring centroid. The distribution of spot sizes and spacing is shown in Figure S18. As the IPTG

concentration is increased spot sizes decrease and have more variance. Similarly the spacing between spots decreases as the IPTG

concentrations is increased.

To determine the sensitivity of the stochastic model to the parameters chosen, we individually varied parameters from half their

nominal value to 1.5x their nominal value while keeping all other parameters fixed. For each set of parameters we calculate the analytical

power spectrum and the eigenvalues of the Jacobian (linear stability matrix) of the stochastic model evaluated at a fixed point found

numerically. We classify each set of parameters as either producing an unstable homogeneous state at wavenumber k = 0, a stable

homogeneous state, a stochastic Turing pattern, or a deterministic Turing pattern. We classify a set of parameters as producing a pattern

if they produce a peak in the calculated power spectrum at a nonzero wavenumber. To distinguish between stochastic Turing patterns and

deterministic Turing patterns we examine the eigenvalues of the corresponding Jacobian. If the real part of all the eigenvalues is negative

for all wavenumbers then the pattern must be due to stochasticity. If there is any range of wavenumbers that have corresponding positive

real parts of their eigenvalues then the pattern is produced by the traditional Turing mechanism.

The results of this analysis are presented in Figure S22. This phase diagram indicates parameter ranges that produce unstable fixed

points in red, stochastic patterns in blue, deterministic Turing pattern in green, and homogeneous stable states in magenta. To determine

the sensitivity of the system to particular parameters we examined how the maximum eigenvalue of the Jacobian changed. In Figure S23

we have plotted the change in the real part of the maximum eigenvalue as a parameter is varied from half of its value to 1.5x its value.

Positive changes, colored in red, indicate that increasing the corresponding parameter promotes traditional Turing patterns. Negative

values, colored in blue, indicate that increasing the corresponding parameter promotes stochastic patterns. The amplitude of the change

gives an indication of the sensitivity of the parameter.

We also used Latin hypercube sampling to randomly generate 500 parameter sets where all the parameters were allowed to vary

between half their nominal value and 1.5x their nominal value. For this analysis we found that 24.8% of parameters produced unstable

fixed points, 43.2% produced stable homogeneous states, 13.2% produced stochastic Turing patterns, and 18.8% produced Turing

patterns. This shows that this complex stochastic model can produce the same behaviors as our effective model. Additionally it shows

that by including stochasticity, the range in which patterns can form has been increased by 70%.

To calculate the analytic power spectrum we used a method similar to that described in S9. We wrote down the transition probabilities

for the stochastic model directly from our deterministic model. For example, the transition probability for U gaining a particle is

T (U →U +1) = αuIu and the transition probability for U losing a particle is T (U →U−1) = γuU . Using a system size expansion one

can derive Langevin equations governing the fluctuations of the form
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∂tx = Ax+ξ where
〈

ξ (t)ξ †(t ′)
〉
= Bδ (t− t ′), [53]

where in the case of this model

A = J−diag([Duk2,Dvk2,0,0,0]) [54]

B = diag([αuIu + γuU +Duk2U,αvIv + γvV +Dvk2V,

αiuF1(X1,C)+ γiuIu,αivF1(X1,C)+ γivIv,

αcF2(X2,L)+ γcC]) [55]

x† = [δU,δV,δ Iu,δ Iv,δC], [56]

and J is the Jacobian of the model evaluated at the fixed point. Using these equations the power spectrum is calculated to be

P(k,w = 0) = 〈xx†〉= A−1B(A−1)†. The fixed point, Jacobian, and power spectrum are numerically calculated using a custom Matlab

script. Figure S24 shows the calculated power spectrum corresponding to the parameters listed in Table S6. In this figure the full model

produces power spectrum with a power law tail of −2 for the inhibitor and an initial power law tail of −4 for the activator before

undergoing a crossover to a −2 power law. The eigenvalues of the spatially extended Jacobian, A, are plotted in Figure S25 showing that

all eigenvalues are negative. This indicates that the set of parameters in Table S6 produces a stochastic Turing pattern.

9. Stochastic Turing Patterns

In many biological and physical problems, noise is understood as a destabilizing agent. It thus comes as a surprise that when Turing-like

systems are subject to noise, noise acts as a stabilizing agent for the spatially patterned state, enlarging its regime in the phase diagram.

For both the case of noise external to the system (extrinsic noise) and noise associated with the discrete creation and annihilation of

chemicals (demographic noise), patterns exist for a wider range of parameter space than would be the case deterministically(29, 30). The

demographic noise of the signaling molecules, where one acts as an activator of gene expression and another an inhibitor, relax the

criteria for separation of diffusion scales and enlarge the parameter space in which patterns should form. Patterns of this type are known

as stochastic Turing patterns. Predictions for the power spectrum, the characteristic scale, and parameter regime in which stochastic

Turing patterns form have been made by Butler and Goldenfeld (29).

A. Power spectra analysis of experimental observations. To test the predictions of stochastic Turing pattern theory we constructed

power spectra for the experimental data. We converted the pictures of red and green fluorescent proteins into gray scale images and

subtracted off the mean intensity to obtain data corresponding to the fluctuations. We then conducted a discrete two-dimensional (2D)

Fourier transform of the data, finding its amplitude squared. Since it is clear from the resulting Fourier transforms that the patterns are

isotropic, we perform an angular average (Figure S13a). The resulting radial power spectrum can be compared to the predictions made

by Butler and Goldenfeld (29) (Figure S13c). By fitting the tail we find a power law with σ =−2.3±0.4 consistent with demographic

noise. It is possible to obtain anomalous power law tails in the power spectrum due to discontinuities in the boundaries of the picture, but

these artifacts are distinguishable by their lack of noise, and we are confident that such spectral leakage is not being observed in these

data. The Fourier transform for the red fluorescent channel is not isotropic and the corresponding radial power spectrum has a power law

with σ =−3.9±0.4 (Figure S13b,d). Radial power spectra were also calculated for other concentrations of IPTG as shown in figures

S14 and S15. The spectra produced are also consistent with predictions of demographic noise.

B. Stochastic Turing pattern model. The traditional Turing mechanism usually consists of at least two chemicals. One of the

chemicals is a slowly diffusing activator, activating the synthesis of itself and the inhibitor. The other chemical is a fast diffusing inhibitor,

inhibiting synthesis of the activator and itself. The Turing mechanism can be explained by a simple qualitative argument consisting of

three steps. Initially activator and inhibitor are distributed randomly. Areas with local concentrations of activator will autocatalytically
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grow, forming dense clumps of activator. Inhibitor will also be produced near these clumps of activator. The rapidly diffusing inhibitor

will suppress the spread of the clumps of activator. This simple picture of activator-inhibitor dynamics does not require large separation

of diffusion rates or depend on details of rates. When this system is considered classically, however, it is found to either require fine

tuning of reaction rates or have a large separation of diffusion rates. We will see shortly that the stochastic treatment solves this fine

tuning problem.

Our synthetic system is system is designed to implement an activator-inhibitor system with A3OC12HSL as an activator of its own

synthesis and that of IC4HSL, while IC4HSL is an inhibitor of both chemicals. To develop a simplified model of the activator inhibitor

circuit, one can write down reaction diffusion equations for this system that are mathematically equivalent to the Levin-Segel model of

herbivore-plankton interaction (31).

∂tφ =µ∇
2
φ +bφ + eφ

2− pψφ [57]

∂tψ =ν∇
2
ψ + pψφ −dψ

2 [58]

Here φ is the concentration of activator (A3OC12HSL), ψ is the concentration of inhibitor (IC4HSL), µ and ν are the the diffusion

constants of the activator and inhibitor respectively. The term pψφ is a competition term, eφ 2 is a nonlinear activation term, and −dψ2

is a nonlinear self inhibition term for the inhibitor. These equations exhibit a Turing instability when (31):

ν

µ
>

(
1√

p/d−
√

p/d− e/p

)2

. [59]

To consider the effects of extrinsic noise we can simply add white noise ξ to the system of equations above. Then we can construct

the Fourier transformed stability matrix and solve for the power spectrum P̂(k,w) where k is the wave-number and w is frequency. When

this is done it is found that the power spectrum has a power law tail, P̂(k,w = 0) = kσ

ν2 〈ξ ξ 〉 ,k� km with an exponent σ =−4 (29). In

addition, the condition for pattern formation becomes ν

µ
> p

e .

Intrinsic noise, represented for example by copy number fluctuations arising from stochastic gene expression, can be studied by

writing down an individual level model for the activator and inhibitor. The following set of chemical reactions describe the effective

activator-inhibitor system that we engineered:

A b−→ AA AI
p1/V−−−→ I II

d/V−−→ I

AA
e/V−−→ AAA AI

p2/V−−−→ II [60]

Here A is the activator (A3OC12HSL) and I is the inhibitor (IC4HSL) and V is the well-mixed patch size setting the strength of the

fluctuations. From these first order reactions one can derive a master equation governing the probability of having m molecules of I and

n molecules of A at a given time:

∂ tP(m,n) =b[(n−1)P(m,n−1)−nP(m,n)]+
e
V
[(n−1)(n−2)P(m,n−1)−n(n−1)P(m,n)]

+
p1

V
[m(n+1)P(m,n+1)−mnP(m,n)]+

p2

V
[(m−1)(n+1)P(m−1,n+1)−mnP(m,n)]

+
d
V
[(m+1)mP(m+1,n)−m(m−1)P(m,n)] [61]

To introduce spatial variations, the master equation can be conveniently represented as a path integral, from which mean-field equations

and Langevin equations with multiplicative noise governing the fluctuations are obtained by van Kampen expansion (29). We calculate the

power spectrum P̂(k,w) as a function of frequency w and wave-number k, obtaining a power spectrum tail (k� km): P̂(k,w = 0)≈ ψ

ν
kσ

(inhibitor), P̂(k,w = 0)≈ φ

µ
kσ (activator) with σ =−2. Patterns arise when

ν

µ
>
( p

e

) 5+7(de/p2)

4+5(de/p2)+3(de/p2)2 . [62]
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Additionally the wavelength, λ , or characteristic spacing of the pattern turns out to be the same as that for a classical Turing pattern (29)

and is found to be

λ = 2π

√
2
φ

µν

eν− pµ
. [63]

C. Stochastic model power spectra analysis. We now discuss the origin of the exponent discussed above, from the standpoint of

two models that we have constructed to analyze the data. The first model is a coarse-grained phenomenological or minimal model for the

morphogens. The second model is a detailed stochastic model, described in SI 8. We will see that there are two factors contributing to the

-2 exponent in the inhibitor channel and the -4 exponent in the activator channel, in the context of intrinsic noise. Note that extrinsic noise,

if present, would lead to an exponent of -4, but in both channels. The first explanation is that activator channel had a very sharp threshold

for expressing the red fluorescence and the pictures were overexposed. This overexposure can suppress the small-scale correlations

in the patterns. This idea is supported by taking data from simulations of demographic-noise induced patterns and performing image

operations on the data to simulate this effect. We ran the simulated data through an image dilation morphological operator with a disk

structural element 1px in radius. The resulting power spectra have power law tails with σ =−4, even though the original data were

intrinsic noise-induced, having a power law tail with σ =−2. Thus, an asymptotic power-law tail of -2 in the power spectrum appears as

an effective exponent of -4 in the presence of overexposure. This is further supported by looking at the spectra in figures S14 and S15.

These images, taken at other IPTG concentrations, were not overexposed and their spectra have power law tails with exponents closer to

-2.

The second explanation uses the detailed stochastic model described in SI 8. This model also predicts power-law tails with σ =−2

for both the activator and inhibitor, at asymptotically large values of k, because, when coarse-grained, the model should be well-described

by the phenomenological model for the morphogens alone. But for the range of parameters that we estimate are consistent with the

experimental data, the detailed model also predicts that for a wide range of intermediate wavenumbers, there is an effective power-law

with σ =−4 for the activator, before undergoing a crossover to a power law with σ =−2 at high wave-numbers. Our interpretation is

that the experiment is indeed well-described by the detailed model, and that we are observing the behavior before the crossover point in

the power spectrum of the RFP channel. Overexposure does not cause any additional change to the effective -4 exponent.

The measured diffusion ratio of ν

µ
= 21.6 is too small to produce classical Turing patterns. In fact to produce patterns qualitatively

similar to the ones observed, the diffusion constants must be separated by a factor on the order of 100 in our non-stochastic simulation

(See figure 3f). We can also plot the estimated range of parameters for our effective model and compare them to regimes where normal

Turing patterns form and stochastic Turing patterns form (Figure S13e). We see from this plot that the estimated parameters fall mainly

in the regime where stochastic patterns form, but not where normal Turing patterns can form. Any parameters above the blue surface

will form classical Turing patterns. Any parameters above the green surface can form stochastic Turing patterns. The yellow oval

representing our estimated range of effective parameters falls mainly below the blue surface but is above the green surface, indicating

most of the parameters fall within the regime of stochastic patterns. We estimated the values and ranges of the ratios ν

µ
, e

p , and d
p

which solely control pattern formation in the reduced model. In our analysis we used the the experimentally measured ratio of diffusion

constants ν

µ
= 21.6±10 and we estimated e

p < 1 by using the knowledge that for any pattern to form, either classical or stochastic, the

homogeneous state must first be stable so p > e. Finally since the degradation rate is always smaller than the rate of production of our

molecules we estimated d
p < 1. Even at our measured values of diffusion constants our stochastic simulation continued to produce

patterns similar to the ones observed in our experiment and produced a power spectrum power law tail with σ −2.4 consistent with our

experiment.
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Table S5. Variables used in the model.

Symbol Molecule

U 3OC12HSL

V C4HSL

Iu LasI

Iv RhlI

C CI

Ru LasR

Rv RhlR

L free LacI

X1 LasR-3OC12HSL complex

X2 RhlR-C4HSL complex
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Table S6. Definitions and values for the rate constants used in our mathematical model.

Parameter Description Value Unit

αu A3OC12HSL production rate 3.0×101 hr−1

γu A3OC12HSL degradation rate 1.0 hr−1

Du A3OC12HSL diffusion coefficient 5.0×10−1 grid2/hr

αv IC4HSL production rate 3.0×101 hr−1

γv IC4HSL degradation rate 1.0 hr−1

Dv IC4HSL diffusion coefficient 10.8 or 50∗ grid2/hr

αiu Basal production rate of LasI 1.0×101 molecules/hr

γiu Degradation rate of LasI 1.0 hr−1

αiv Basal production rate of RhlI 0.3 molecules/hr

γiv Degradation rate of RhlI 1.0 hr−1

αc Basal production rate of CI 1.0×101 molecules/hr

γc CI degradation rate 1.0 hr−1

λu Ratio between LasR and LasI 1.0 �

λv Steady state level of RhlR by λP(R−O1) w/o CI regulation 1.0×103 molecules

λl Steady state level of LacI from placq expression 1.5×102 molecules

Kc3 A3OC12HSL-RhlR dissociation constant 1.5×102 molecules

I IPTG concentration 1.0×10−6∼−2 M
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Table S7. Additional definitions and values for the rate constants used in our mathematical model.

Parameter Description Value Unit

θ1 Hill coeff. for LasR-A3OC12HSL complex activation of PLas−OR1 1.0 �

Kd1 Disso. constant of LasR-A3OC12HSL complex with PLas−OR1 1.0×103 molecules

f1 Fold change for full induction of PLas−OR1 1.0×103 �

θ2 Hill coeff. for CI repression of PLas−OR1 2.0 �

Kd2 Disso. constant of CI with PLas−OR1 1.0×101 molecules

f2 Fold change for full inhibition of PLas−OR1 1.0×105 �

θ3 Hill coeff. for RhlR-IC4HSL complex activation of PLas−OR1 1.0 �

Kd3 Disso. constant of RhlR-IC4HSL complex with pRhl-lacO 1.0×105 molecules

f3 Fold change for full induction of pRhl-lacO 1.0×103 �

θ4 Hill coeff. for the LacI activation of pRhl-lacO 4.0 �

Kd4 Disso. constant of LacI with pRhl-lacO 1.0×102 molecules

f4 Fold change for full inhibition of pRhl-lacO 1.0×103 �

θ5 Hill coeff. for the CI activation of λP(R−O1) 2.0 �

Kd5 Disso. constant of CI with λP(R−O1) 1.0×103 molecules

f5 Fold change for full induction of λP(R−O1) 1.0×105 �

θ6 Hill coeff. for the IPTG binding to LacI 1.0 �

Kd6 Disso. constant of IPTG with LacI 1.0×10−3 M

f6 Fold change of LacI activity for IPTG full induction 1.0×105 �
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Figure Captions

Figure S1: Design of Turing pattern formation system. a, A3OC12HSL serves as the activator species and catalyzes its own synthesis

as well as that of IC4HSL. IC4HSL is the inhibitor, as this signal ultimately represses production of A3OC12HSL and IC4HSL. b, Initial

genetic network implementation. A3OC12HSL binds LasR and activates p(Las)-OR1 promoters that express LasI and RhlI. LasI catalyzes

synthesis of A3OC12HSL, and RhlI catalyzes synthesis of IC4HSL. IC4HSL binds RhlR and activates p(Rhl)-OR1, which expresses CI, and

CI represses the p(Las)-OR1 promoters in addition to p(Rhl)-OR1. c, Modeling results suggested that a design with a CI OR1 binding

site in the promoter expressing RhlR instead of in p(Rhl) was more enriched for Turing instabilities. d, Placing LasR under control of the

p(Las)-OR1 promoter effectively increases the p(Las)-OR1 response sensitivity to A3OC12HSL. For clarity, arrows were not shown in (c)

and (d) to indicate LasR binding A3OC12HSL and activating p(Las)-OR1 or RhlR binding IC4HSL and activating p(Rhl).

Figure S2: Computational exploration of design variations. a, Several different designs were simulated with CI OR1 binding domains in

different combinations of promoters and both with and without A3OC12HSL degrading acylase. In the simulations, a promoter contains an

OR1 domain if the corresponding bit in the binary representation of the network number is a 1. Likewise, acylase is expressed only

if bit6 of the binary representation of the network number is 1. For example, 5610 = 01110002, so Network 56 has an OR1 site in the

p(Las)-OR1 promoters expressing LasI and RhlI and in the promoter expressing RhlR since bit3, bit4, and bit5 are all 1. b, Number of

random parameter sets found for each network. Although Network 106 was most enriched for Turing instabilities, this network requires

acylase expression. Networks 56 and 57, depicted in Figure S1c, which do not require acylase expression were ultimately chosen

instead.

Figure S3: Constitutive LasR and p(Las) controlled LasR. a, Genetic network with constitutively expressed LasR and a p(Las) promoter

expressing a reporter gene. b, Genetic network with p(Las) expressing both a reporter and LasR. c, Reporter expression versus A3OC12HSL

for these networks using the following parameters: α0 = 0.01, α1 = 1, K = 0.5, d = 1, m = 1.

Figure S4: Plasmids used in our patterning and control experiments. a, Plasmid pFNK-512 implements activation of A3OC12HSL

and IC4HSL. It corresponds to the upper part of the circuit diagram in Figure 1b in the main text. b, Plasmid pFNK-804-LacO-LacI

corresponds the lower part of the circuit diagram. It implements inhibition of both signals. c, Plasmid pFNK806 is derived from

pFNK804-LacO-LacI and provides better contrast between green and red fluorescence intensities. d, Plasmid pTOG-1 is a two-color

bistable toggle switch. It is used to explore the role of collective commitment in pattern formation. e-f, pINV-5 and pASK-201 are

IPTG-inducible plasmids that produce GFP and RFP correspondingly. Both are used in our control experiments. g, Sequences for the

hybrid promoters PLas−OR1 and PRhl−lacO.

Figure S5: Liquid AHL dosage response curves for the reporter cells. The red curve is the A3OC12HSL response of cells harboring

pFNK-503-qscrsaL, a A3OC12HSL detector plasmid. The blue curve is the IC4HSL response of cells harboring the receiver plasmid

pFNK-202-qsc119, a IC4HSL detector plasmid.

Figure S6: Comparison of our experimental data with modeling results. a-b, Fluorescence intensity of receiver cells in response to AHL

gradients in 2% M9 agar plates. In both panels, the four curves correspond to hours 0, 2.5, 5, and 8.75. c-d, For simulations, fluorescence

intensity simulation results were obtained using our mathematical model. The estimated diffusion coefficient for A3OC12HSL is 83 µm2/s

and for IC4HSL is 1810 µm2/s.

Figure S7: Additional experiments to verify that diffusion rate calculations are reasonably robust to changing biofilm characteristcs over

time. Fluorescence intensity of receiver cells in response to AHL gradients in 2% M9 agar plates.The four curves correspond to hours 0,

2.5, 5, and 8.

Figure S8: Competitive binding of A3OC12HSL to RhlR inhibits activation of promoter pRhl by IC4HSL. a, GFP expression from pRhl

promoter is induced by IC4HSL (blue bar) but is not induced by A3OC12HSL (red bar). b, GFP expression from pRhl promoter decreases

with A3OC12HSL for a fixed concentration of IC4HSL.

Figure S9: Populations of E. coli expressing constitutive fluorescent reporter proteins GFP or mCherry were mixed in various ratios of
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[Green:Red] on M9 supplemented minimal media and then imaged by microscopy. Scale bar, 200 µm.

Figure S10: Behavior of cell populations with each cell harboring an intracellular green/red bistable toggle switch. a, A bistable toggle

switch derived from Gardner et al (20). b, Flow cytometry fluorescence density plot of the toggle cells at time 0. c, Flow cytometry

fluorescence density plot of cells scraped from the cell lawn at 24 hours. d-e, Microscope images of cell lawns harboring the toggle

switch circuit at 24 hours. Both RFP (d) and GFP (e) are homogeneously distributed and qualitatively different from that of a population

carrying the emergent circuit in Fig. 2a. Scale bar, 100 µm. f, Fluorescence density plot of the microscope images in panels d-e.

Figure S11: Moran’s I of the patterns from our deterministic simulations.

Figure S12: Emergence of patterns over time. Snapshots of red fluorescence were taken every 30 minutes for 32 hours. Shown are

images in 4-hour intervals. Scale bar, 100 µm. Left: Average minimium distance between spots as a function of time, blue shading

indicates standard deviation. Right: Average spot diameter as a function of time.

Figure S13: a, GFP image and corresponding Fourier transform. c, Radial power spectrum of GFP and power law fit of -2.3. b, RFP

image and corresponding Fourier transform. d, Radial Power spectrum of RFP with a powerlaw tail fit of -3.9. e, Pattern forming regimes

in parameter space and estimated parameters for our system. The parameters fall above the region where stochastic patterns form but

below the region where normal Turing patterns form. f, Characteristic separation of spots with average separation of 32±8px (45±11

µm).

Figure S14: RFP images and their corresponding Radial Power spectrums with powerlaw tail fits of -2.5, -2.5, -2.9 for IPTG

concentrations of 10−3 M, 10−2.5 M, and 10−2 M respectively.

Figure S15: GFP images and corresponding Radial Power spectrums with a powerlaw tail fits of -2.1, -2.2, -2.2 for IPTG concentrations

of 10−3 M, 10−2.5 M, and 10−2 M respectively. At IPTG concentrations smaller than 10−4 M The green channel begins to look spatially

homogeneous as the signal is not strong enough to show-up beyond the background camera noise.

Figure S16: A3OC12HSL and IC4HSL patterns produced in our stochastic simulation using the parameters given in Tables S6-S7. The red

line indicates the location of the cross-section used for all other dynamic variables. Cross-sectional slices of variables U (A3OC12HSL),

V (IC4HSL), Iu (LasI), Iv (RhlI), C (CI), Ru (LasR), Rv (RhlR), L (free LacI), X1 (LasR-A3OC12HSL complex), and X2 (RhlR-IC4HSL

complex).

Figure S17: A3OC12HSL patterns produced in our stochastic simulation using Dv/Du = 100 and the parameters given in Tables S6-S7

for three different concentrations of IPTG.

Figure S18: Spot size and spacing distributions for 30C12HSL produced in our stochastic simulation with Dv/Du = 100 for three

different values of IPTG.

Figure S19: A3OC12HSL patterns produced in our stochastic simulation using the measured diffusion ratio of Dv/Du = 21.6 and the

parameters given in Tables S6-S7 for three different concentrations of IPTG.

Figure S20: 2D power spectrum and radial power spectrum for 30C12HSL produced in our stochastic simulation using Dv/Du = 21.6

for three different values of IPTG.

Figure S21: Spot size and spacing distributions for 30C12HSL produced in our stochastic simulation using Dv/Du = 21.6 for three

different values of IPTG.

Figure S22: Phase Diagram showing the type of phase as each parameter is varied from half of its nominal value to 1.5x its nominal

value while keeping all other parameters fixed. Red indicates an unstable fixed point, magenta a stable homogeneous state, blue a

stochastic pattern, and green deterministic Turing pattern.

Figure S23: Sensitivity of a phase to a parameter is indicated by plotting the difference in eigenvalues between 1.5x the nominal value

of a parameter and half of the nominal value. Red indicates a parameter that when increased promotes traditional Turing patterns and

blue indicates a parameter promoting stochastic patterns.

Figure S24: The Analytic power spectrum calculated for the parameter set given in Tables S1-S2.
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Figure S25: The real part of the eigenvalues of the Jacobian for the parameter set given in Tables S1-S2 plotted as a funtion of k. All the

eigenvalues are negative indicating that the pattern formed is stochastic.
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Fig. S1. Design of Turing pattern formation system. a, A3OC12HSL serves as the activator species and catalyzes its own synthesis as well as that of IC4HSL. IC4HSL is

the inhibitor, as this signal ultimately represses production of A3OC12HSL and IC4HSL. b, Initial genetic network implementation. A3OC12HSL binds LasR and activates

p(Las)-OR1 promoters that express LasI and RhlI. LasI catalyzes synthesis of A3OC12HSL, and RhlI catalyzes synthesis of IC4HSL. IC4HSL binds RhlR and activates

p(Rhl)-OR1, which expresses CI, and CI represses the p(Las)-OR1 promoters in addition to p(Rhl)-OR1. c, Modeling results suggested that a design with a CI OR1

binding site in the promoter expressing RhlR instead of in p(Rhl) was more enriched for Turing instabilities. d, Placing LasR under control of the p(Las)-OR1 promoter

effectively increases the p(Las)-OR1 response sensitivity to A3OC12HSL. For clarity, arrows were not shown in (c) and (d) to indicate LasR binding A3OC12HSL and

activating p(Las)-OR1 or RhlR binding IC4HSL and activating p(Rhl).
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Fig. S2. Computational exploration of design variations. a, Several different designs were simulated with CI OR1 binding domains in different combinations of promoters

and both with and without A3OC12HSL degrading acylase. In the simulations, a promoter contains an OR1 domain if the corresponding bit in the binary representation

of the network number is a 1. Likewise, acylase is expressed only if bit6 of the binary representation of the network number is 1. For example, 5610 = 01110002, so

Network 56 has an OR1 site in the p(Las)-OR1 promoters expressing LasI and RhlI and in the promoter expressing RhlR since bit3, bit4, and bit5 are all 1. b, Number of

random parameter sets found for each network. Although Network 106 was most enriched for Turing instabilities, this network requires acylase expression. Networks 56

and 57, depicted in Figure S1c, which do not require acylase expression were ultimately chosen instead.
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Fig. S3. Constitutive LasR and p(Las) controlled LasR. a, Genetic network with constitutively expressed LasR and a p(Las) promoter expressing a reporter gene.

b, Genetic network with p(Las) expressing both a reporter and LasR. c, Reporter expression versus A3OC12HSL for these networks using the following parameters:

α0 = 0.01, α1 = 1, K = 0.5, d = 1, m = 1.
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Fig. S4. Plasmids used in our patterning and control experiments. a, Plasmid pFNK-512 implements activation of A3OC12HSL and IC4HSL. It corresponds to the upper part

of the circuit diagram in Figure 1b in the main text. b, Plasmid pFNK-804-LacO-LacI corresponds the lower part of the circuit diagram. It implements inhibition of both

signals. c, Plasmid pFNK806 is derived from pFNK804-LacO-LacI and provides better contrast between green and red fluorescence intensities. d, Plasmid pTOG-1 is a

two-color bistable toggle switch. It is used to explore the role of collective commitment in pattern formation. e-f, pINV-5 and pASK-201 are IPTG-inducible plasmids that

produce GFP and RFP correspondingly. Both are used in our control experiments. g, Sequences for the hybrid promoters PLas−OR1 and PRhl−lacO.
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Fig. S5. Liquid AHL dosage response curves for the reporter cells. The red curve is the A3OC12HSL response of cells harboring pFNK-503-qscrsaL, a A3OC12HSL detector

plasmid. The blue curve is the IC4HSL response of cells harboring the receiver plasmid pFNK-202-qsc119, a IC4HSL detector plasmid.
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= 83 μm2/s

= 1810 μm2/s

Fig. S6. Comparison of our experimental data with modeling results. a-b, Fluorescence intensity of receiver cells in response to AHL gradients in 2% M9 agar plates. In

both panels, the four curves correspond to hours 0, 2.5, 5, and 8.75. c-d, For simulations, fluorescence intensity simulation results were obtained using our mathematical

model. The estimated diffusion coefficient for A3OC12HSL is 83 µm2/s and for IC4HSL is 1810 µm2/s.

David Karig et al. 10.1073/pnas.XXXXXXXXXX 29 of 48



−3 −2 −1 0 1 2 3
0

2

4

6

8
Experiment

Distance X (cm)

N
or

m
al

iz
ed

 F
lu

os
ce

nc
e 

(a
.u

.)

−3 −2 −1 0 1 2 3
0

2

4

6

8
Simulation

Distance X (cm)

Fl
uo

sc
en

ce
 (a

.u
.)

−3 −2 −1 0 1 2 3
0

2

4

6

8
Experiment

Distance X (cm)

N
or

m
al

iz
ed

 F
lu

os
ce

nc
e 

(a
.u

.)

−3 −2 −1 0 1 2 3
0

2

4

6

8
Simulation

Distance X (cm)

Fl
uo

sc
en

ce
 (a

.u
.)

−3 −2 −1 0 1 2 3
0

2

4

6

8
Experiment

Distance X (cm)

N
or

m
al

iz
ed

 F
lu

os
ce

nc
e 

(a
.u

.)

−3 −2 −1 0 1 2 3
0

2

4

6

8
Simulation

Distance X (cm)

Fl
uo

sc
en

ce
 (a

.u
.)

−3 −2 −1 0 1 2 3
0

1

2

Experiment

Distance X (cm)

N
or

m
al

iz
ed

 F
lu

os
ce

nc
e 

(a
.u

.)

−3 −2 −1 0 1 2 3
0

1

2

Simulation

Distance X (cm)

Fl
uo

sc
en

ce
 (a

.u
.)

−3 −2 −1 0 1 2 30

1

2

Experiment

Distance X (cm)

N
or

m
al

iz
ed

 F
lu

os
ce

nc
e 

(a
.u

.)

−3 −2 −1 0 1 2 30

1

2

Simulation

Distance X (cm)
Fl

uo
sc

en
ce

 (a
.u

.)

−3 −2 −1 0 1 2 3
0

1

2

Experiment

Distance X (cm)

N
or

m
al

iz
ed

 F
lu

os
ce

nc
e 

(a
.u

.)

−3 −2 −1 0 1 2 3
0

1

2

Simulation

Distance X (cm)

Fl
uo

sc
en

ce
 (a

.u
.)

C4HSL Diffusion 3OC12HSL Diffusion

8 hr pre-incubation 8 hr pre-incubation

12 hr pre-incubation 12 hr pre-incubation

20 hr pre-incubation 20 hr pre-incubation

Fig. S7. Additional experiments to verify that diffusion rate calculations are reasonably robust to changing biofilm characteristcs over time. Fluorescence intensity of

receiver cells in response to AHL gradients in 2% M9 agar plates.The four curves correspond to hours 0, 2.5, 5, and 8.
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Fig. S8. Competitive binding of A3OC12HSL to RhlR inhibits activation of promoter pRhl by IC4HSL. a, GFP expression from pRhl promoter is induced by IC4HSL (blue bar)

but is not induced by A3OC12HSL (red bar). b, GFP expression from pRhl promoter decreases with A3OC12HSL for a fixed concentration of IC4HSL.
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Fig. S9. Populations of E. coli expressing constitutive fluorescent reporter proteins GFP or mCherry were mixed in various ratios of [Green:Red] on M9 supplemented

minimal media and then imaged by microscopy. Scale bar, 200 µm.

32 of 48 David Karig et al. 10.1073/pnas.XXXXXXXXXX



Fig. S10. Behavior of cell populations with each cell harboring an intracellular green/red bistable toggle switch. a, A bistable toggle switch derived from Gardner et

al (20). b, Flow cytometry fluorescence density plot of the toggle cells at time 0. c, Flow cytometry fluorescence density plot of cells scraped from the cell lawn at 24

hours. d-e, Microscope images of cell lawns harboring the toggle switch circuit at 24 hours. Both RFP (d) and GFP (e) are homogeneously distributed and qualitatively

different from that of a population carrying the emergent circuit in Fig. 2a. Scale bar, 100 µm. f, Fluorescence density plot of the microscope images in panels d-e.
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Fig. S11. Moran’s I of the patterns from our deterministic simulations.

34 of 48 David Karig et al. 10.1073/pnas.XXXXXXXXXX



0hr 4hr 8hr

12hr 16hr 20hr

24hr 28hr 32hr

0 10 20 30 40
Time (hours)

0

100

200

300

400

500

D
is

ta
n

ce
 t

o
 N

ex
t 

S
p

o
t 

(p
x)

Average Minimium Distance Between Spots

0 10 20 30 40
Time (hours)

0

2

4

6

8

10

12

14

A
ve

ra
g

e 
S

p
o

t 
D

ia
m

et
er

 (
p

x)

Average Spot Size

Fig. S12. Emergence of patterns over time. Snapshots of red fluorescence were taken every 30 minutes for 32 hours. Shown are images in 4-hour intervals. Scale bar,

100 µm. Left: Average minimium distance between spots as a function of time, blue shading indicates standard deviation. Right: Average spot diameter as a function of

time.
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Fig. S13. a, GFP image and corresponding Fourier transform. c, Radial power spectrum of GFP and power law fit of -2.3. b, RFP image and corresponding Fourier

transform. d, Radial Power spectrum of RFP with a powerlaw tail fit of -3.9. e, Pattern forming regimes in parameter space and estimated parameters for our system.

The parameters fall above the region where stochastic patterns form but below the region where normal Turing patterns form. f, Characteristic separation of spots with

average separation of 32±8px (45±11 µm).
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Fig. S14. RFP images and their corresponding Radial Power spectrums with powerlaw tail fits of -2.5, -2.5, -2.9 for IPTG concentrations of 10−3 M, 10−2.5 M, and 10−2

M respectively.
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Fig. S15. GFP images and corresponding Radial Power spectrums with a powerlaw tail fits of -2.1, -2.2, -2.2 for IPTG concentrations of 10−3 M, 10−2.5 M, and 10−2 M

respectively. At IPTG concentrations smaller than 10−4 M The green channel begins to look spatially homogeneous as the signal is not strong enough to show-up

beyond the background camera noise.
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Fig. S16. A3OC12HSL and IC4HSL patterns produced in our stochastic simulation using the parameters given in Tables S6-S7. The red line indicates the location of the

cross-section used for all other dynamic variables. Cross-sectional slices of variables U (A3OC12HSL), V (IC4HSL), Iu (LasI), Iv (RhlI), C (CI), Ru (LasR), Rv (RhlR), L (free

LacI), X1 (LasR-A3OC12HSL complex), and X2 (RhlR-IC4HSL complex).
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Fig. S17. A3OC12HSL patterns produced in our stochastic simulation using Dv/Du = 100 and the parameters given in Tables S6-S7 for three different concentrations of

IPTG.
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Fig. S18. Spot size and spacing distributions for 30C12HSL produced in our stochastic simulation with Dv/Du = 100 for three different values of IPTG.
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Fig. S19. A3OC12HSL patterns produced in our stochastic simulation using the measured diffusion ratio of Dv/Du = 21.6 and the parameters given in Tables S6-S7 for

three different concentrations of IPTG.
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Fig. S20. 2D power spectrum and radial power spectrum for 30C12HSL produced in our stochastic simulation using Dv/Du = 21.6 for three different values of IPTG.
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Fig. S21. Spot size and spacing distributions for 30C12HSL produced in our stochastic simulation using Dv/Du = 21.6 for three different values of IPTG.
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Fig. S22. Phase Diagram showing the type of phase as each parameter is varied from half of its nominal value to 1.5x its nominal value while keeping all other

parameters fixed. Red indicates an unstable fixed point, magenta a stable homogeneous state, blue a stochastic pattern, and green deterministic Turing pattern.
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Fig. S23. Sensitivity of a phase to a parameter is indicated by plotting the difference in eigenvalues between 1.5x the nominal value of a parameter and half of the

nominal value. Red indicates a parameter that when increased promotes traditional Turing patterns and blue indicates a parameter promoting stochastic patterns.
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Fig. S24. The Analytic power spectrum calculated for the parameter set given in Tables S1-S2.
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Fig. S25. The real part of the eigenvalues of the Jacobian for the parameter set given in Tables S1-S2 plotted as a funtion of k. All the eigenvalues are negative

indicating that the pattern formed is stochastic.
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