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Summary 

We have performed detailed modeling of the COVID-19 epidemic within the State of Illinois at 

the population level, and within the University of Illinois at Urbana-Champaign at a more detailed 

level of description that follows individual students as they go about their educational and social 

activities. 

We ask the following questions: 

(1) How many COVID-19 cases are expected to be detected by entry screening? 

(2) Will this initial “bump” in cases be containable using the mitigation steps being undertaken 

at UIUC? 

Our answers are: 

(1) Assuming that there are approximately 45,000 students returning to campus in the week 

beginning August 15, 2020, our most conservative estimate predicts that a median of 270 

± 90 (minimum-maximum range) COVID-19 positive cases will be detected by entry 

screening.  The earliest estimate for entry screening that we report was made on July 24th 

and predicted 198 ± 90 (68% CI) positive cases. 

(2) If the number of returning students is less, then our estimate just needs to be scaled 

proportionately. 

(3) This initial bump will be contained by entry screening initiated isolation and contact 

tracing, and once the semester is underway, by universal masking, a hybrid teaching model, 

twice-weekly testing, isolation, contact tracing, quarantining and the use of the Safer 

Illinois exposure notification app. 
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Introduction 

One of the many challenges arising from the COVID-19 epidemic is to develop a sustainable and 

safe way for educational institutions to reopen[1-9].  Here we focus on universities, rather than K-

12 education, and in particular our own institution, the University of Illinois at Urbana-Champaign 

(UIUC).  The features that make universities exciting and valuable institutions in societies world-

wide --- the academic and intellectual congregation of young adults, the social opportunities, the 

exposure to an unprecedentedly range of activities --- are also the features that lend themselves to 

rapid transmission of COVID-19.  Indeed, by enrolling in majors and attending a fixed set of 

courses, together with electives or breadth requirements, students inhabit social bubbles within a 

temporal small-world network whose nodes are classes and whose edges are students.  Social life 

outside this academic network provides mixing between these social bubbles, so that one would 

expect transmission to occur very rapidly within a university population, perhaps more so than the 

population at large.  In addition, the toxic combination of asymptomatic transmission, especially 

amongst young adults, and the inevitable bars, party and nightlife, especially in poorly ventilated 

settings, is highly conducive to super-spreader events.  During the summer of 2020, many such 

instances have been reported.  

In the face of these difficulties, most universities have decided to teach remotely, even though this 

is sub-optimal in terms of the educational experience.  A few universities, including UIUC, are 

attempting a so-called hybrid teaching model, whereby a fraction of classes is taught online and 

the rest in person, but following accepted social distancing guidelines.  The non-pharmaceutical 

interventions available to a university administration to mitigate the spread of COVID-19 include: 

reduced class size, universal masking, regular testing, followed by isolation, contact tracing and 

quarantining, and exposure notification through apps.  In addition, it is critical to perform entry 

screening at the start of the semester to isolate students who arrive on campus already infected 

from their home town, many of whom will be asymptomatic or pre-symptomatic.  At UIUC all of 

these are being deployed, in collaboration with the Champaign-Urbana Public Health District 

(CUPHD). 

The primary question addressed in this report is: how many cases to expect to arise during entry 

screening?  This “bump” in cases is important to anticipate in advance, because without this 

number as context, it is difficult for university administration to know if the cases that occur at the 

beginning of the semester reflect community transmission or are a temporary event that will decay 

once mitigation measures are deployed.  

We have approached this question by estimating the bump in three different ways, each of which 

makes different assumptions.  We discuss the merits and applicability of these different 

methodologies, and show that they reveal a broadly consistent picture which can be compared to 

universities’ reopening data.  Finally, we preview, without detail, the results of agent-based models 

that indicate the containability of COVID-19 at UIUC through a particular set of mitigation steps.  

The details of these models will be published elsewhere. 

Estimate of the initial “bump” 

The basic idea of the estimate is simple: we take the number of students that will be entering 

campus and use the prevalence of COVID-19 in the population to calculate how many will be 

positive.  Thus: 
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Number of positive cases detected = (number of incoming students) × (COVID-19 prevalence) 

The difficulty is that the prevalence is not directly observable so needs to be inferred somehow. 

We infer the prevalence in three ways: from the output of our population level models for the State 

of Illinois; from the daily incidence rate and the Infection Fatality Rate (IFR); and from active case 

data and IFR.  All methods give similar results within uncertainties.  We are primarily interested 

in the reopening of the University of Illinois at Urbana-Champaign (UIUC), but we have extended 

our calculations to other States and the District of Columbia and present these results below too.   

For the case of UIUC, the prevalence in Champaign Country is significantly lower than that for 

the State as a whole, but since students return from all over the State and elsewhere, we will use 

the prevalence for the State not Champaign County. 

Method 1: Using computer models for the entire State. 

As early as July 24, 2020, we attempted to estimate the entry screening results.  We have previously 

reported in detail on our methods to simulate the COVID-19 epidemic in Illinois and its sub-

regions using a non-Markovian age-of-infection model calibrated to data provided by the Illinois 

Department of Public Health (IDPH) [10].  The model simulates the progression of the disease as 

reflected in hospital occupancy, ICU occupancy and deaths, and provides as output a prediction 

for the daily incidence of new infections.   

  

 

 

Figure 1. Simulation of the COVID-19 epidemic in Illinois.  Left panel: projected fraction of 

currently infectious individuals within the State. Solid line is the median estimate, dark and light 

bands indicate 68% and 95% confidence intervals respectively.  Right panel: projected epidemic 

curves for hospital occupancy, ICU occupancy, hospital deaths, all deaths and new infections 

(computed 8/12/2020). Crosses indicate data from IDPH. 

The model predicts a prevalence of about 0.44 ± 0.2% by August 15, assuming individuals are 

infectious for a Gamma-distributed period with mean 5 days and standard deviation 2 days (see, 

e.g. [11], although such viral dynamics data are very difficult to measure precisely and were 

recently revised).  
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Thus, we estimate the number of positive cases detected = 45,000 * 0.0044 ± 0.002 = 198 ± 90 

This uncertainty is for a 68% confidence interval.  Using a broader estimate of uncertainty, given 

by the 95% confidence interval, we estimate the prevalence as lying between 0.16% and 0.92%, 

yielding a range of positive cases detected from 72 to 414. 

Method 2: Using daily incidence data and infection fatality ratio (IFR). 

In order to refine the early estimate made three weeks in advance of the entry screening itself, we 

use a combination of epidemiological data and the known viral dynamics within an infectious 

person to provide an alternative estimate.  There is no set convention for what constitutes an active 

case, and so we performed a different estimate of prevalence as described below. In addition, we 

have extended our calculation to other US States, not just Illinois. 

We define prevalence P as: 

𝑃 =
𝐴

𝑁

𝐶𝐹𝑅

𝐼𝐹𝑅
 

where N is the population of that State, A is active confirmed cases who will still test positive on 

the day of interest, CFR is the case fatality ratio, and IFR is the infection fatality ratio. We may 

then define the detection rate of infections 𝑠𝑟 as 𝑠𝑟 = 𝐼𝐹𝑅/𝐶𝐹𝑅.  

We estimate the active confirmed cases 𝐴 who will still test positive on day t using the daily 

incidence 𝐽𝑐 as reported in [7] as follows: 

𝐴 = ∫
𝑡−𝑇𝑝

𝑡
 𝐽𝑐(𝜏)𝑑𝜏 

Here, we have assumed that people who have tested positive 𝑇𝑝 days ago will still test positive on 

the current day t. The above integral may be further simplified using the following approximation 

𝐴 ≈ 𝑇𝑝 𝐽𝑐(𝑡) 

Here 𝐽𝑐(𝑡)is the confirmed daily incidence on day t computed using a 7-day moving average. 

The above approximation is likely to be an overestimate in states with growing epidemic while 

being an underestimate in states with shrinking epidemic. However, the error in either cases is 

acceptable within limits of uncertainty of different parameters characterizing the epidemic. 

To estimate the Case Fatality Ratio, we use the following formula: 

𝐶𝐹𝑅 =
< 𝑑(𝑡) >7

< 𝐽𝑐(𝑡 − 𝜏𝑑) >7
 

Here < 𝑑(𝑡) >7 is the 7-day average of daily death at time t and < 𝐽𝑐(𝑡 − 𝜏𝑑) >7 is the 7-day 

average of confirmed daily incidence from 𝜏𝑑 days in the past. This shift is important to account 

for delays between onset of symptoms (which generally has been found to be close to the day of 

testing) and death. We take 𝜏𝑑 = 21 days. 

For the state of Illinois we have the following estimates.  Several studies [2,5,6] suggest that 

people may test positive for up to 𝑇𝑝 = 21 days after the onset of symptoms. The confirmed 7-

day average of the daily incidence in the State on August 21,2020 is 1903. Thus the active 
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confirmed cases who may test positive on that day is approximately given by 21 x 1903 = 

39963.  

The case fatality ratio CFR on August 21,2020 is estimated as follows. < 𝐽𝑐(𝑡 − 21) >7= 1488, 

< 𝑑(𝑡) >7= 19.1. Accordingly, CFR = 19.1/1488 = 1.28%.  

Assuming an IFR = 1.0% we thus estimate that P = 0.4%. 

Assuming an IFR = 0.5% we estimate that P = 0.8%. 

The above estimates for prevalence in the State range between 0.4% and 0.8%. This range is 

consistent with the estimates from our age of infection model (Method 1) that give a 95% credible 

interval for the range of prevalence between 0.16% and 0.94%.  

Using the above methodology, we present estimates for prevalence in the 50 States and the District 

of Columbia in the Supplementary Information. Figure 2 shows the range of these values. The red 

dash in each box corresponds to the median value. For the state of Illinois, the median predicted 

value for the prevalence is 0.6%. 

Method 3: Using active cases data and infection fatality ratio (IFR).  

In order to give an independent estimate, we can use epidemiological data available from the IDPH 

website (https://www.dph.illinois.gov/covid19).  The idea is to work backwards from the known 

COVID-19 deaths to infer the total number of infections.  This number would be the same as the 

number of COVID-19 cases measured in the State, if the State was able to test everyone all the 

time.  In practice, this is impossible, so by comparing the total number of infections, we can 

estimate the detection rate.  Once we have the detection rate, we can work out the actual number 

of infected people in Illinois right now from the number that have actually been detected and 

confirmed COVID-19 positive.  Dividing by the population of the State gives the prevalence.  

On Aug 14, 2020, the total number of COVID-19 deaths was 7,721.  The IFR is usually taken to 

be 0.7% and is almost certainly within the range 0.5%-1.0% according to the World Health 

Organization [3].  This means that the total number of people who have been infected in the State 

of Illinois is 7721/0.007 = 1,103,000.  IDPH has detected 202,691 confirmed cases during the 

course of the epidemic, so the average detection rate is 202,691/1,103,000 = 18.3%.  This is a 

crude estimate because the testing has increased from < 5000 per day at the early stages to nearly 

50,000 tests per day, and the severity of the epidemic has grown, declined and started to grow 

again in a second wave. A more reliable estimate for the detection rate may be computed using the 

case fatality ratio CFR on Aug 14, 2020 which is estimated to be equal to 1.2% (See Table in 

Supplementary Information). Accordingly, the detection rate is 0.7/1.2 = 58%. For these cases, the 

recovery rate is 95% according to IDPH [4], so the number of active confirmed cases known right 

now in Illinois might seem to be 0.05 × 202,691 = 10,134.  However, this is misleading, because 

the recovery rate is defined (in Illinois only) as those cases whose specimen collection occurred 

more than 42 days ago, and who have not died, divided by the sum of such cases and the number 

of COVID deaths.  The implications of this definition are the following.  The number of active 

confirmed cases is actually, according to the IDPH definition, 202,691 – 20 × 7721 = 48,271.  The 

time period of 42 days used in this definition is not supported from the perspective of the viral 

dynamics. In fact, in prior work on temporal viral dynamics [12], the virus was not detected beyond 

33 days after symptom onset. Furthermore, according to these studies, the virus is likely to be 

undetected in most samples beyond 21 days. Thus only a fraction of these 48,271 cases are likely 
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to test positive again on Aug 14, 2020.  We estimate this fraction, guided by the current state of 

the art of viral dynamics, to be in the range of 21/42 x 48,271 = 24,135 to 33/42 x 48,271 = 37,927.    

These estimates ignore the cases that have not been detected.  To work out the actual number of 

people who may test positive on Aug 14, 2020, we correct by dividing these number by the 

detection rate 58% to get a range between 41,612 and 65,391.  Finally, we estimate the prevalence 

by dividing by the population of the State to get 0.33% < P < 0.51%.  Again, this range is consistent 

with the ones estimated in Methods 2 and 3. 

We summarize the estimates for the number of entry-screened cases in the table below. 

 

Table 1: Summary of estimates for NES, the number of cases detected by entry screening at the 

University of Illinois at Urbana-Champaign using three different methods of estimation as 

described in the text. 

 

Method 

Result 
Nature of uncertainty 

interval 
NES P % 

Method 1 

NES (50%) = 198 

72 < NES < 414   (95% CI) 

108 < NES < 288 (68% CI) 

P (50%) = 0.44 

0.16 < P < 0.92 

0.22 < P < 0.66 

Projections made on July 

24th, 2020 for prevalence on 

Aug 12th, 2020 using the age 

of infection model. 

Method 2 
NES (50%) = 270 

180 < NES < 360 (Min-Max) 

P (50%) = 0.6 

0.4 < P < 0.8 
Uncertainty in Infection 

Fatality Ratio 

Method 3 
NES (50%) = 189 

149 < NES < 230 (Min-Max) 

 

P (50%) = 0.42 

0.33 < P < 0.51 

Uncertainty in the time 

duration over which virus 

may continue to be 

detectable post symptom 

onset 

 

Effectiveness of mitigation 

We have simulated the spread of COVID-19 on campus using agent-based modeling, following 

each student as they attend university activities and participate in off-campus socializing.  Full 

details will be given elsewhere.  For now we simply note some of the assumptions of our models, 

some of which are more conservative than what is actually the case: in other words, we are likely 

over-estimating the severity of the epidemic and under-estimating some of the mitigation 

measures.  At UIUC, these measures are known collectively as “SHIELD”, and implemented in 

partnership with the Champaign-Urbana Public Health District (CUPHD). 
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Figure 2. Estimated prevalence in the 50 states and the District of Columbia computed using 

Method 2 on August 21, 2020. Details are provided in the Supplementary Information. The median 

value is indicated by the red dash, the box delineates the maximum and minimum values. 

• SARS-CoV-2 is assumed to be transmitted through local interactions and aerosols [13-19] 

• Universal masking within University buildings.  However, we do not assume that students 

will be wearing masks in restaurants or bars or other off-campus premises. We are thus 

underestimating the effectiveness of masks. 

• We follow all the students who had classes in Fall 2019 as a representation of the University 

activity: this is about 45,000 students.  The actual number may be much less in Fall 2020. 

• All classes with more than 50 students are online.  This represents about 40% of the total 

number of classes.  We assume the rest are in person.  In fact, UIUC policy allows 

professors to decide how they wish to teach, and with the publicly stated figure of 1/3 in-

person classes, we are under-estimating the number of online classes and over-estimating 

the infection spread within the University. 

• We assume 2 tests per week, using UIUC’s saliva testing protocol [20]. 

• We assume contact tracing (CT) works backwards to trace all interactions between the 

index case and contacts that are longer than 15 minutes, closer than 6 feet, within the 48 

hours previous to testing.  Contact tracing effectiveness is assumed to be 50%: half the 

contacts are missed. 
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• We assume exposure notification (EN) uses a privacy-preserving protocol that only 

provides an alert for a nearby contact detected via Bluetooth if the duration was longer than 

2 hours.  This is to ameliorate the problem of false-positives and weights the detected 

events only to those where there is a high likelihood of exposure (so-called “risk-weighted” 

exposure notification).  We compare our own algorithm for risk-weighted exposure 

notification (EN), which will be reported elsewhere, to other existing exposure notification 

applications that are currently used worldwide. These applications include (i) the German 

Corona Warn App (CWA), which generates exposure notifications with the risk of 

exposure weighted by the idealized infectiousness profile of a typical Covid-19 patient as 

reported in [11]; and (ii) the Google/Apple Decentralized Privacy Preserving Proximity 

Tracing (DP3T) application which generates exposure notification for any interaction 

longer than 15 minutes with an individual who has tested positive. 

• Students move on a schedule between a variety of zones: home, lectures, library, coffee 

shops, restaurants, bars/parties on a schedule and infect each other with epidemiological 

characteristics derived from the literature, especially [11,21,22].  Masks are assumed only 

in University buildings, not in social life --- a worst case scenario. 

 
 

Figure 3. Simulation of 45,000 student epidemic curves during the semester, starting from an 

initial infection of 200 students.  The figure shows the impact of multiple mitigation strategies 

in containing the epidemic at a steady state, and its effectiveness in bringing under control the 

initial “bump” in cases. Simulations are repeated 10 times and median and standard deviation 

is shown. 

 

In Figure 3 we show the results of our agent-based model for the start of the semester, assuming 

that 200 agents arrive on campus as test positive.  The curve labelled “infected” shows the active 
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cases, and the curve labelled “isolated” shows the number of cases detected by our frequent testing 

protocol and isolated.  The isolated cases is not congruent to the active cases for two reasons: first 

there is a delay due to the testing protocol, and second because of the false negative rate assumed 

in the testing of 11%.  The initial “bump” is clearly visible but decays over about 20 days.  The 

speed with which this bump decays is sensitive to the delays in getting testing results returned.  In 

the figure, we used a 5 hour delay, which is what we have anticipated for the Illinois pipeline.   

 

 

 

Figure 4. Simulation of 45,000 student epidemic curves during the semester, starting from an 

initial infection of 200 students.  Top: Daily number of new cases.  Bottom: Active cases. 

Simulations are repeated 10 times and median and standard deviation is shown. 

 

In Figure 4, we show additionally the number of new cases expected and the number of active 

cases. 
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Over the semester the total number of infected agents is shown in Figure 5, starting with unchecked 

disease progression, and layering on successive mitigation modalities.  We only show the effect of 

testing, masks, online classes and manual contact tracing.  Exposure notifications can in principle 

reduce the number of infections but not by a number that is statistically significant if the other 

modalities are working.  This would be different, for example, if manual contact tracing was 

inoperative: exposure notification on its own is about as effective as manual contact tracing (but 

only if there is > 60% adoption of the exposure notification app). 

 

Figure 5. Total number of infected students during the semester under a variety of mitigation 

“bundles”, including different protocols for exposure notification.  This number includes the initial 

200 infected students.  The results shown here are for a particular transmission model, and are only 

weakly sensitive to model assumptions, such as aerosol transmission and other disease 

characteristics.   

 
Figure 6. Maximum number of isolated COVID-19 confirmed cases and quarantined contacts, 

under a variety of mitigation measures. 

In Figure 6, we show the maximum number of infected cases who are isolated at any one time and 

the number of students quarantined as a result of contact tracing.  The maximum isolation size is 

dominated by the early period of the semester when there are 200 imports to campus (this number 
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is not exactly equal to 200, because of the false negative rate of the UIUC saliva test).  In steady 

state, after the initial burst, the number is about 50.   

 

Conclusion 

When students return to campus, a University must be prepared for there to be a significant number 

of detected COVID-19 confirmed cases.  These individuals must be isolated, and asked to 

participate in contact tracing, in accord with public health district policies.  It is essential that these 

be followed and especially that returning students work closely with public health officials to break 

the chains of transmission.  Non-compliance in this can be very destructive potentially or prolong 

the initial burst. 

Overall, multi-layered mitigation including regular testing of the entire university population, 

universal masking, a hybrid teaching model, isolation, contact tracing and quarantine, and 

exposure notification can be very effective in enhancing student safety.  By extension, a contained 

epidemic within the student population combined with a low prevalent state in the community will 

help provide as safe an environment as possible for all. 
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