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Directed percolation and puff jamming near 
the transition to pipe turbulence

Grégoire Lemoult    1,2, Vasudevan Mukund2, Hong-Yan Shih    3,4,5, 
Gaute Linga    6,7, Joachim Mathiesen    6, Nigel Goldenfeld    3,8   & 
Björn Hof    2 

The onset of turbulence in pipe flow has defied detailed understanding 
ever since the first observations of the spatially heterogeneous nature 
of the transition. Recent theoretical studies and experiments in 
simpler, shear-driven flows suggest that the onset of turbulence is a 
directed-percolation non-equilibrium phase transition, but whether these 
findings are generic and also apply to open or pressure-driven flows is 
unknown. In pipe flow, the extremely long time scales near the transition 
make direct observations of critical behaviour virtually impossible. Here 
we find a technical solution to that limitation and show that the universality 
class of the transition is directed percolation, from which a jammed phase 
of puffs emerges above the critical point. Our method is to experimentally 
characterize all pairwise interactions between localized patches of 
turbulence puffs and use these interactions as input for renormalization 
group and computer simulations of minimal models that extrapolate 
to long length and time scales. The strong interactions in the jamming 
regime enable us to explicitly measure the turbulent fraction and confirm 
model predictions. Our work shows that directed-percolation scaling 
applies beyond simple closed shear flows and underscores how statistical 
mechanics can lead to profound, quantitative and predictive insights on 
turbulent flows and their phases.

The behaviour of basic fluid flows is governed by the Reynolds number, 
Re ≡ UD/ν, where U is a characteristic velocity, which in pipe flow we will 
take to be the bulk velocity, D is a length scale that we will take to be the 
pipe diameter and ν is the kinematic viscosity. At low Re, below about 
2,000 in pipes, fluid flow is smooth and predictable (that is, laminar), 
but it becomes irregular, stochastic and unpredictable (that is, turbulent) 
at higher Re. At the onset of turbulence in pipe flow, spatially localized 
patches of turbulence (puffs) emerge from the laminar background flow, 
as first reported by Reynolds1 and subsequently studied in detail2–6. Puffs 

have finite lifetimes and decay following a memoryless process7–11. Before 
decay, and depending on the Reynolds number, they can seed other 
puffs through a process called puff splitting. Based on these observa-
tions, the critical point (that is, the critical Reynolds number Rec) for the 
onset of sustained turbulence can be approximated by the Reynolds 
number where puff decay and splitting are balanced, so that there is a 
non-zero turbulent fraction in the pipe12. Theory suggests that this tran-
sition might generally be described as a non-equilibrium phase transition 
in the directed percolation (DP) universality class11,13–20, and experiments 
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However, the speed of the downstream puff was different 
from that of an isolated puff, and could not be calculated from this 
experiment. Instead, a second protocol was used, which consisted 
of triggering a train of 100 equally spaced puffs and measuring the 
time delays between two pressure sensors separated by 350 D. The 
advantage here is that the distance between two puffs does not vary 
during the experiment. In both protocols, if a splitting or decay event 
was detected, the measurement was discarded. We averaged these 
measurements over 1,000 realizations for the first protocol and 
10 realizations for the second protocol, effectively averaging over 
the same number of puffs. The outcomes of these experiments are 
summarized in Fig. 2.

Figure 2a presents the evolution of the downstream puff velocity, 
vpuff(l), as a function of the upstream puff distance l. For each Re, we 
observe a plateau for l > 100 corresponding to the advection speed of 
an isolated puff, v∞. For l < 100, the downstream puff is accelerated 
corresponding to a repulsion. By transforming to the frame moving at 
v∞, it is possible to collapse all curves into a unique one. We fitted these 
master curves by an exponential decay

vpuff(l) − v∞ = A exp(−l/lc), (1)

with amplitude A = 0.22 and decay length lc = 12. The exponential 
nature of the interaction confirms that the puff–puff repulsion is only 
short-range.

in closed quasi-one-dimensional21 and two-dimensional22 Taylor–Couette 
flows have measured critical exponents and universal scaling functions 
in satisfactory agreement with expectations.

The main practical difficulty in determining the nature of the lami-
nar–turbulent transition in shear flows is the excessively long time 
scale of the underlying microscopic processes. Near the transition in 
pipe flow, puff decay and splitting have time scales that are of order 107 
advective time units (D/U) (ref. 12). The time scales of flow patterns to 
reach a statistical steady state diverge as the critical point is approached, 
and even a finite distance away from the critical point will far exceed the 
respective life and splitting times. In this regard, transitional turbulence 
is plagued with the problems of huge time and length scales that arise 
in other areas of physics, including equilibrium phase transitions23 and 
the glass transition24. Given that turbulent puffs advect downstream at 
approximately the bulk flow speed, pipes considerably exceeding 107 
diameters in length would be required to investigate the nature of the 
transition, making such an undertaking impossible in practice.

Although these requirements may appear to put a solution to the 
pipe flow problem beyond reach, we here present a way to circumvent 
these practical limitations. Specifically, we precisely measure the dif-
ferent phenomena occurring at the scale of individual puffs and then 
perform up-scaling by combining the experimental data with theory 
and numerical simulations to reveal the statistical nature of the transi-
tion and the phase diagram of interacting turbulent puffs. In Fig. 1, we 
summarize our bottom-up multiscale approach. At the lowest level of 
description, experiment and also direct numerical simulations (DNSs) 
reveal that puffs move and interact25,26 through four elemental processes 
that we measure in detail here: (1) ‘pushing’ of a downstream puff by 
its upstream neighbour; (2) ‘suppression’ of a downstream puff by its 
upstream neighbour, causing it to decay faster than it would in isolation; 
(3) ‘inhibition’ of the splitting of an upstream puff by the presence of a 
sufficiently close downstream neighbour; and (4) random motion of a 
puff superimposed on the mean flow velocity downstream. From these 
ingredients, we develop long-wavelength model equations of motion 
on scales larger than the puff dimensions for a system of effectively 
point-like interacting puffs that can be solved numerically. At the high-
est level of description, we formulate the statistical mechanics for the 
model of interacting puffs and solve for the phase diagram and univer-
sality class using renormalization group theory and coarse-grained 
numerical methods. Finally the model predictions are verified in experi-
ments using a new technique to periodically re-create puff patterns, 
allowing observation times in excess of the limit set by the physical pipe 
length. The point-puff approximation is justified by our measurements 
and simulations of puff turbulent energy profiles, showing localization 
over a length scale that does not diverge going through the transition 
region and implying that the origin of critical scaling behaviour is the 
collective, system-wide interactions of the puffs on large length scales 
(see Supplementary Information Section I for more discussion).

To characterize quantitatively the puff–puff interactions, experi-
ments were carried out, in which puffs were generated near the inlet of 
a pipe and monitored at several locations downstream using pressure 
sensors. A detailed description of the setup and procedure is available 
in Supplementary Information Section I. In subsequent discussion of 
the experiments, quantities are non-dimensionalised by using the 
pipe diameter D and mean velocity U as the length and velocity scales.

We first investigated the repulsion mechanism between puffs. Two 
different protocols were used to measure how the puff advection speed 
is influenced by an upstream puff. In the first series of experiments, 
two puffs were generated. A first pressure sensor detects them 75 D 
downstream, and then a second sensor detects them a further 350 D 
downstream. The time delay for each puff gives us its speed, and the 
time delay between them gives us the puff separation. These experi-
ments confirmed that the upstream puff speed was unaffected by the 
presence of the downstream puff, and its velocity was consistent with 
the speed of an isolated puff measured previously27.
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Fig. 1 | Illustration of the bottom-up multiscale approach to the laminar–
turbulent transition in pipe flow used in this study. a, Instantaneous turbulent 
kinetic energy of the perturbation averaged over the cross-section of the pipe 
q(z, t) = ∫ (u− ulam)

2d2r from a DNS showing two interacting turbulent puffs.  
u is the velocity field as a function of space r, z is the streamwise direction along 
the pipe axis, d is a notation from calculus and ulam is the laminar velocity field. Its 
time-averaged (in a comoving frame) value, q , shows that although each puff is 
unique due to its history and dynamics, the time-averaged counterparts are 
statistically equivalent. The spatially localized turbulent kinetic energy justifies 
the point-like particle approach. b, A mesoscale model describes puffs as point 
particles interacting in a one-dimensional domain and is solved numerically. c, At 
the macroscopic scale, statistical mechanics analytically and numerically yields 
the phase diagram and detailed transitional behaviour of the flow. Here scale 
invariance at the critical point is illustrated in our continuous model using the 
puff density ρ in a large domain for Re = 2,040.22 (Re− Rec = 0.004).
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We then investigated how the presence of a second puff influences 
the characteristic times associated with decay and splitting. For this 
series of experiments, we used four pressure sensors located at 75 D,  
410 D, 730 D and 1,055 D from the perturbation. A train of 1,000 equally 
spaced puffs was generated, and we monitored the number of decaying 
and splitting puffs at each sensor. We could confirm that both process 
are memoryless by fitting the survival and splitting distributions with 
an exponential distribution; see Supplementary Information Section 
I for details of this procedure. The characteristic time of each distribu-
tion gives us the decay time (or splitting time) for this Re and puff– 
puff distance l.

Figure 2c shows the evolution of the characteristic decay times 
for different Re as a function of l. Once again these characteristic times 
reach a plateau for l > 100 corresponding to the isolated puff limit12. 
For l < 100, the lifetime of a puff is considerably reduced (more than 
two orders of magnitude for Re = 2,015). Thus, the upstream puff is 
acting as a ‘puff killer’, as shown previously25. The opposite situation 
arises in the splitting time of a puff (Fig. 2d). Although we still reach 
the isolated puff limit when l > 100, for l < 100, the presence of a down-
stream puff increases the characteristic splitting time, thus effectively  
inhibiting splitting.

Although puff propagation speed has been previously inves-
tigated27, little is known of its stochastic nature. We recorded the 
arrival-time distribution of 1,000 isolated puffs using pressure sensors 
located at 75 D, 410 D, 730 D and 1,055 D downstream of the perturba-
tion, using the first sensor as the time origin. Figure 2b shows those 

distributions close to the transition at Re = 2,040. Their variance, σ2, 
shows a linear increase with time showing that puff propagation has 
a diffusive component in addition to the mean advection. We also 
determined how the puff diffusion coefficient, Dpuff, varies with Re (Sup-
plementary Fig. 12). However, it shows only a very weak dependence for 
Re > 2,000. Accordingly, for the analysis of the critical behaviour, we 
henceforth ignore its dependence on Re and use a fixed value of 0.015.

Having determined the pairwise interactions between puffs, we 
proceed to build a statistical mechanics model of their collective behav-
iour, treating each puff as a point particle. A similar philosophy, using 
numerical data, has been used to study boundary layer dynamics 
through a cellular automaton28. A general configuration will be a gas 
of puffs with spatial density ρ(x, t) at a position along the pipe with axis 
x and time t (see Supplementary Information Section III for a precise 
definition and analysis). The spatially averaged density (that is, a proxy 
for the turbulent fraction) along a pipe of length L is given by 
ρ(t) ≡ ∫L0 ρ(x)dx/L, and the long-time steady-state equilibrium value 
ρ∞ is expected to approach zero for Re→ Re+c  in the case of a continu-
ous transition. Above and near the transition, ρ∞ ≈ (Re − Rec)

β asymp-
totically as Re→ Rec. The critical exponent β has the value 0.276 for 
1 + 1 DP. We calculate the behaviour of ρ(x, t) by first ignoring puff 
suppression or pushing. Particles can hop to positive x with rate p, 
decay with rate ωd and split with rate ωs. In this case, the time-dependent 
density ρ(x, t) satisfies a stochastic hydrodynamics equation obtained 
by systematic expansion methods from the microscopic description 
of the above processes (Supplementary Information Section IV)

10 15 20 25

0

0.01

0.02

0.03

0 100 200

1,950

2,000

2,050
2,100
2,150

–100 5 0 10 20 30
0

0.05

PD
F

0.10

0.15

0 500 1,000

100 150 200
102

104

106

1,875

1,900

1,922

1,945

1,970

1,990

2,015

0 50 0 50 100 150 200

104

106

2,084

2,106

2,130

2,153
2,175

2,200

2,232

2,261

a b

dc

0.94

0.96

0.98

1.00

1.02

1.04

0

20

40

l/lc

l l

l 410 D
730 D
1,055 D

τ d
ec

ay

τ s
pl

it

tpuff — tpuff

ν pu
ff
 —

 ν
∞

tpuff

ν pu
ff σ2

Fig. 2 | Puff dynamics as a function of puff-to-puff separation and Re. a, Speed 
of a puff as a function of the distance l to an upstream puff for different Re 
(indicated in the figure). Data are presented as mean values ± s.d. over 10 
realizations of a 100-puff train. Curves are collapsed by subtracting the advection 
speed of an isolated puff as measured by ref. 27. The grey solid line is the best fit 
for the collapsed data by an exponential decay (vpuff(l) − v∞ = A exp(−l/lc) with 
amplitude A = 0.22 and decay length lc = 12). b, Time of arrival (tpuff) distributions 
(1,000 puffs) for different positions along the pipe axis for Re = 2,040. Solid lines 
are the best fit by a normal distribution. An isolated puff effective diffusion 
coefficient, Dpuff, is estimated from the evolution of the variance of the 
probability density functions (PDFs) (inset), where error bars represent the 95% 

confidence interval. c, Evolution of the characteristic decay time (τdecay) for 
different Re (for values, see figure) as a function of the distance to an upstream 
puff. d, Evolution of the characteristic splitting time (τsplit) for different Re (for 
values, see figure) as a function of the distance l to a downstream puff. In c and d, 
the grey solid lines are the interpolation function used in the model (see 
Supplementary Information Section II for more details). Decay/splitting times 
are presented as their best estimate ± their 95% confidence interval obtained by 
fitting the decay/splitting distribution with a Poisson distribution. The 
distribution sample size varies for each (Re, l) and is thus given in Supplementary 
Tables 1 and 2.
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∂tρ = −ωdρ +
1
2
(p + ωs)∂2xρ − (p + ωs)∂xρ + ωsρ(1 − ρ)

+(2p + ωs)ρ∂xρ −
ωs
2
ρ∂2xρ +√ρ(1 − ρ)η

(2)

where η(x, t) is a white noise delta-correlated in space and time, p is the 
rate at which particles hop to the right, ωd is the puff decay rate and ωs 
is the rate of puff splitting. Note that the calculation shows that the 
dynamics is controlled by multiplicative noise, which has the effect that 
the empty state is absorbing. This form of the noise arises because of 
the rule that there can be only one particle per site, corresponding to 
the fact that two puffs cannot occupy the same position in space. The 
description here is complementary to a recent stochastic account of 
puff interactions and their internal dynamics, extending to higher Re 
where expanding regions of turbulence occur29.

Equation (2) is similar to the Langevin equation for DP30, but with 
the addition of three terms: the term proportional to ∂xρ and the last 
two terms of second order in ρ. The linear term arises because the puff 
dynamics is diffusive (the second-order term, linear in ρ) but in a frame 
moving with the net velocity of the puffs. This anisotropic diffusion 
can be removed by a Galilean transformation into the comoving frame. 
The second term is proportional to ρ∂xρ and has the functional form 
of the advective nonlinearity in Burgers equation. Such terms naturally 
arise in traffic-flow models31 and, loosely speaking, lead to shocks that 
model the bunching up of particles as occurs in traffic jams, transcrip-
tion by ribosomes moving on mRNA32–34, and so on. The shocks are 
regularized by the higher-order derivative terms, including the third 
extra term and the linear diffusive term. The connection to Burgers 
equation for the description of density dynamics in one-dimensional 
traffic-flow problems is standard and goes back to the earliest papers35. 
Puff suppression and pushing add further higher-order and nonlinear 

terms to the equation of the form ρ ̃α(∂
̃β
xρ)

̃γ
 where ̃α, ̃β and ̃γ are positive 

integers derived in Supplementary Information Section IV. This type 
of model is known to comprise rich dynamics, including jammed, 
crystalline phases where due to pushing, constituents are in close 
proximity and densely spaced. In the case of pipe flow, we would on 
this basis expect to observe crystalline regions that are separated by 
low-density regions where puffs freely advect and diffuse: in other 
words, a coexistence of fluid–crystalline regions. Close to the critical 
point, where the turbulent fraction is vanishingly small, the jammed 
crystalline regions are melted by fluctuations and do not influence the 
critical scaling behaviour. We discuss below the actual observations 
of this behaviour in both experiments and simulations. By writing the 
stochastic equation for ρ(x, t) as a field theory and evaluating the scal-
ing dimensions of all the terms at the fixed point describing the DP 
transition, we find that all the non-DP terms are irrelevant in the renor-
malization group sense (Supplementary Information Section IV). 
Therefore, the complicated dynamics of the puffs that we have char-
acterized should behave asymptotically close to the onset of turbu-
lence with the scaling behaviour of DP.

To test these theoretical predictions, we have performed a con-
tinuum stochastic dynamics simulation with a great level of realism 
regarding the interactions between puffs, as determined experimen-
tally. In this continuum model, each puff is considered a point particle 
interacting with its closest neighbours, using the measured effective 
potential between puffs. We can then solve the equation of motion for 
each puff in the frame comoving at v∞

dxi
dt

= vpuff(xi − xi−1) +√2Dpuffξi(t) (3)

where xi is the streamwise coordinate of the ith puff, vpuff(xi − xi−1) is the 
pushing speed of puff i as a result of puff i − 1 as measured in equation 
(1), and ξi(t) is a Gaussian white noise with mean zero and standard 
deviation 1, thus modelling the random walk of an isolated puff due to 

turbulent fluctuations within and between puffs, with an effective 
diffusion coefficient Dpuff. In addition to equation (3), each puff experi-
ences decay and splitting with rates τd,i = τd(Re, xi − xi−1)  and 
τs,i = τs(Re, xi+1 − xi), respectively, accounting for the presence of an 
upstream/downstream puff as measured in the experiment. Details of 
their analytical expression can be found in Supplementary Information 
Section V.B.2.

Equation (3) was solved numerically using an explicit Euler–Maruy-
ama scheme in an Lx = 108-D-long domain using periodic boundary 
conditions. Graphics processing unit accelerated computation was 
used to resolve the large spatial and temporal scales at play.

For each Re investigated, the initial state was chosen to be equally 
spaced puffs with separation Δx = 40 D corresponding to a quench 
experiment. After all transients have vanished (t ≫ 1010 for Re ≈ Rec; 
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bars are the minimum and maximum values. For the experimental data, the 
sample size used is seven. For the simulation, the sample size varies for each Re 
and is given in Supplementary Table 3. b, Scale-invariant laminar gap time 
distribution near the critical point Re = 2,040.22 (Re − Rec = 0.004). The solid 
black line corresponds to the theoretical exponent μDP∥ = 1.841. c, Scale-invariant 
laminar gap length distribution near the critical point Re = 2,040.22 
(Re − Rec = 0.004). The solid black line corresponds to the theoretical exponent 
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1 + 1-dimensional DP order parameter scaling exponent at criticality36.
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see the Supplementary Information for details), the statistical equilib-
rium puff density ρ∞ was measured and is presented in Fig. 3a (blue 
circles). The transition appears to be continuous, ruling out a first-order 
transition. Close to the critical point, ρ∞(Re) is well described by a 
power law ρeq ∝ (Re − Rec)

β, with Rec = 2,040.22, where β = 0.276 is the 
exponent for the DP universality class (grey line in inset of Fig. 3a). Note 
that, as is typical for a phase transition, microscopic rules such as puff 
interactions (Fig. 2a), diffusion coefficient (Supplementary Fig. 12) or 
puff widths (Supplementary Fig. 4) do not show any sudden change 
near the critical point, instead showing a weak Reynolds number 
dependence that does not alter as we pass through the critical point.

Within the DP framework, scale-invariant patterns are expected 
close to the critical point, as can be seen in Fig. 1c. Quantitatively, the 
laminar gap distributions in both time and space are plotted in Fig. 3b,c. 
A power law distribution is observed, and the measured exponents are 
in close agreement with their DP theoretical predictions (grey lines 
in Fig. 3), showing that the process is scale invariant. An even more 
stringent test is the data collapse expected for the time-dependent 
turbulent fraction in the vicinity of the critical point. As shown in Fig. 3c, 
the data precisely fall on the universal scaling functions (black curves) 
predicted by DP.

The large time scales and fluctuations close to critical make it 
impossible experimentally to approach the scaling range for the puff 
density seen in Fig. 3. However, using an improved version of the setup 
in ref. 26, the technique described there allows us to closely approach 
the critical point. Exploiting the memoryless (that is, non-aging) nature 
of puffs, puff patterns exiting the pipe were re-created at the pipe 
entrance, which effectively implements periodic boundary conditions. 
Starting from some arbitrary sequence of puffs (corresponding to an 
initial puff density), the flow could be followed until it reached a steady 

state with a corresponding puff density (Supplementary Information 
Section II). A statistically converged puff density could be obtained for 
Reynolds numbers as low as ΔRe = 2 from the critical point. At Re closer 
to critical, the long time scales, increased fluctuations and stringent 
control on Re required (due to the steep change in puff density) make 
it impossible to obtain the puff densities. For instance, at Re = 2,038 
(the data point indicated with an open symbol), even after a time of 109 
advective time units (corresponding to a month of measurement time), 
the fluctuations were too large to obtain a reliable estimate of the puff 
density, as reflected in the large error bar. Overall, the experimentally 
observed patterns and the turbulent fraction (Fig. 3) are found to be in 
excellent agreement with the corresponding model predictions, sug-
gesting that our model indeed includes all the essential processes and 
interactions of turbulent structures in the vicinity of the critical point.

Above the critical point, both experiments and simulations indi-
cate the presence of a jammed crystalline phase, as shown in Fig. 4. 
In fact, at the closest Re to the critical point where converged experi-
mental data were obtained, the jammed crystalline phase is found to 
persist, and consequently the experiments remain outside the scaling 
range. This jammed crystalline phase is present throughout the puff 
regime, but the fraction of jamming reduces as the Reynolds number 
approaches the critical point. To quantify this observation, we show 
in Fig. 4 a simple measure of short-range crystalline order based on 
the Lindemann criterion, where we compare the fluctuations in puff 
spacing with its mean. The melting of the jammed crystalline regions 
is evident as the critical point is approached. This jammed phase estab-
lishes local short-range order and is in that respect comparable to the 
well-known stripe patterns in planar shear flows5. Given that the flow 
reaches this jammed phase only after time scales in excess of 104 advec-
tive time units, it has been overlooked in earlier studies.
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black and λ is shown using the colourmap. As Re approaches the critical points, 
jammed crystalline regions melt away due to fluctuations. ‘Exp.’ denotes data 
from experiment.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02513-0

Finally, we wanted to verify that our results are robust to variation 
of model parameters by exploring how the phase diagram of interacting 
puffs depends on individual puff splitting and decay rates. To this end, we 
devised a computationally efficient lattice model of the puff interaction 
dynamics uncovered in our experiments, closely related to the statistical 
hydrodynamics of equation (2) (see Supplementary Information Section 
V for full details). This model permits even greater scale-up than the 
continuous puff model and allows us to readily scan through an order of 
magnitude of puff splitting and decay rates. In the experiment, the values 
of τd and τs are given by the Reynolds number, whereas in the model, we 
can independently vary the two time scales and therefore more broadly 
test the universality of the transition in the puff density. In Fig. 5, we 
show the phase diagram of the puff density computed as a function of 
the splitting and decay lifetime. We plot the corresponding line that the 
experiments follow and note that we universally obtain a DP transition 
in this diagram whenever we cross from a low-density to a high-density 
puff state (from the grey area to the coloured area in the figure). Thus, 
we conclude that the DP transition is robust and does not depend on the 
precise values of the splitting and decay rates in our model.

In conclusion, we have shown that the nature of the laminar–tur-
bulent transition in pipes can be inferred by characterizing the puff 
interactions experimentally and using statistical mechanics to capture 
the intrinsically multiscale aspect of the phenomena to predict the 
phase diagram and asymptotic critical phenomena (Supplementary 
Information Section V). Although long temporal and spatial scales 
have been anticipated from previous studies12, the requirement of a 
system size of (Lx = 108 D) and a simulation time of 1012 advective time 
units to reach a statistical equilibrium is far beyond those found in 
other flows21,22. To put this into perspective in the current experimental 
setup, a single data point well within the DP scaling range would require 
a measurement time of approximately 100 years and a pipe 4,000 m 

long. This DP scaling regime only extends to 0.05% of the critical point; 
beyond this, puff interactions take over. In the resulting jammed/crys-
talline regime, flow patterns equilibrate several orders of magnitude 
faster. It is this circumstance that allows us to directly resolve turbulent 
fractions in experiments as close as 0.1% from critical and in doing so 
to validate the model predictions, albeit outside of the scaling range.

Our work extends the generality of the DP transition phenomenon 
to open, pressure-driven flows and identifies the extent of the critical 
regime beyond which specific interactions start to dominate, leading 
to the novel hydrodynamic behaviour of puff jamming. Our results 
provide a definitive resolution to a 140-year-old puzzle in pipe flow and 
underscore how statistical mechanics can lead to profound quantita-
tive and predictive insights on turbulent flows and their phases.
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I. MULTI-SCALE STOCHASTIC MODELS OF
TRANSITIONAL TURBULENCE AND PUFF

DYNAMICS

In the model considered in the main text, the unit of
turbulence is considered to be a single puff, and the model
describes the interactions between puffs treated as point
particles. The dynamics of these puffs is modeled by rules
that encapsulate the actual hydrodynamic interactions
arising from the way in which one puff influences the
mean velocity profile across the pipe.

The justification for the point-puff approximation
comes from experiment, direct numerical simulation
(DNS) and theoretical consideration. In the main text,

we show experiments and DNS results that indicate how
the puff dimensions do not change significantly as one
varies the Reynolds number and passes through the tran-
sition to turbulence. This shows that the singular behav-
ior that we report is a result of collective puff interactions
over system-wide scales, reflected in diverging correlation
lengths in space and time that emerge from the directed
percolation (DP) picture.
This conclusion also emerges from theoretical analysis.

One can start by asking what is the dynamics of turbu-
lence in general, and in particular on scales smaller than
a single puff? How can effective stochastic models on
multiple scales be obtained from the Navier-Stokes equa-
tions, which capture the essential features of the laminar-
turbulent transition at scales ranging from within a puff
to the macroscopic scale considered in the point-puff
models presented here? What, if any, is the relation-
ship between these models and the point-puff models?
Do they also exhibit the characteristics of directed per-
colation, as originally implied by Pomeau [1]?
These questions are distinct from the model consid-

ered here, and can be addressed by attempting to de-
rive the effective theory for turbulence from the Navier-
Stokes equation, as was done in Ref. [2]. There, numer-
ical simulations suggested that the most singular contri-
bution to the behavior of a single puff near the onset of
turbulence arose from the interplay between two weak-
modes that necessarily vanish near the transition: a col-
lective large-scale zonal flow and small-scale turbulent
anisotropy. The former mode is an emergent mean flow
created (activated) by the small-scale turbulence; on the
other hand, the emergent mean flow suppresses (inhibits)
the small-scale turbulence. The resulting effective the-
ory has been termed a “predator-prey” or “ecological”
model of the laminar-turbulent transition [2], and is a
non-equilibrium counterpart to what would be Landau
theory in an equilibrium transition.
Remarkably, this ecological model turns out also to

be in the universality class of directed percolation, at
least asymptotically close to the transition. In order to
further elucidate this finding, a mean field derivation of
this single puff model from the Navier-Stokes equations
has been presented [3].
The final bridge between the small-scale structure of

the laminar-turbulent transition and the point-puff mod-
els presented here was the extension of the ecological
model for a single puff to include streamwise shear in-
teractions between patches of turbulence [4]. This work
showed that it is possible to recapitulate the entire phase
diagram of transitional pipe and quasi-one-dimensional
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Taylor-Couette flow, including the transitions from puffs
to weak then strong slugs as Re is increased through the
transition [5, 6].

Although the methodological origin of directed perco-
lation from this multi-scale perspective is very different
from what happens in the puff-splitting model of the
present paper, the puff-splitting model in the present
work describes decay, merging and splitting of point par-
ticles and these dynamics are sufficient for the directed
percolation universality class to emerge.

In summary, we conclude from experiment RG theory
and DNS that even with strong puff-puff interactions of
the suppression-pushing type, the universality class for
the transition to pipe turbulence is consistent with di-
rected percolation, and that the point-puff model used
in the main text is fully justified as a description of the
critical regime.

II. EXPERIMENTAL SETUP

In this section, we provide complete details of the ex-
perimental setup and measurement techniques. Setup A
in Fig. S1 shows a schematic of the experiments used to
measure the microscopic rules governing puff dynamics.
The measurements were carried out in aD = 4±0.01 mm
pipe of length L/D = 1500, made of 6 segments of preci-
sion glass tubes joined together with acrylic connectors.
A few of these connectors had 0.8 mm holes (perpendic-
ular to the pipe axis) that acted as ports for pressure
measurement or to perturb the flow. Puffs can be eas-
ily identified by a sharp increase in pressure drop across
the pipe and by monitoring the number of puffs at differ-
ent positions along the pipe, we can monitor puff decays
and splittings. To avoid any consequent changes in the
flow-rate and hence Re, the flow was driven in a constant
mass flux mode using a metering pump from Fuji Techno
Industries Corporation (model HYSA 12). This pump
features three pistons operating 180◦ out of phase, driven
by a precision servo motor ensuring a pulsation free and
accurate flow rate (better than 0.1%) over the entire op-
erating range. The temperature of the fluid, distilled wa-
ter, was measured by platinum RTD probes at the inlet
and outlet of the pipe. The fluid viscosity was calculated
from a fit to standard temperature-viscosity data. The
fluid temperature was maintained constant and equal to
22 ± 0.05◦C by means of a heat exchanger resulting in
an estimated variation of ±5 in terms of Re over sev-
eral days. The flow is perturbed 150D downstream of
the inlet and the laminar profile can be considered fully
developed. The laminar flow is then disturbed by simul-
taneously injecting and withdrawing fluid by a push-pull
perturbation via two 0.8 mm diametrically opposed holes
in one of the acrylic connectors. As illustrated by Fig. S1,
the perturbation mechanism consists of a coil to move a
small magnetic cylinder,which injects water from one of
the ports, while simultaneously withdrawing it from the
other port, thus ensuring a disturbance with zero net

flux. It is known (see, for example, [7]) that provided
a perturbation is successful in creating turbulence, the
resulting puff is independent of the perturbation details
and all puffs are statistically identical, with a fixed aver-
age length at a given Re. The state of the flow is moni-
tored by measuring the differential pressure drop across
a distance of 3D, using variable-reluctance differential
pressure sensors from Validyne(model DP-45). As a puff
passes the pressure ports, the increased skin friction re-
sults in an increased differential pressure across the pair
of pressure ports. Thus, the passage of a puff across the
measurement point shows up as a peak in the pressure
signal at that time instant as seen in Fig. S2a, which
shows the signal corresponding to a train of puffs.

FIG. S1 A schematic of the experimental set-ups and the
perturbation mechanism used to trigger puffs. Setup A was
used to measure the microscopic rules governing puff motion
and interactions. Setup B, is the quasi-periodic pipe used to
obtain the steady state characteristics for different Re.

To quantify the inter-puff repulsion, two kinds of mea-
surements were carried out, with the pressure signals be-
ing monitored 75D and 425D downstream of the per-
turbation. In the first series of measurements, two puffs
were generated close to one another, at various separa-
tions. The pressure traces were used to determine the
time at which the puffs passed each of the measurement
points. This could be used to determine the mean speed
of each puff as well as their relative speed. These mea-
surements reveal that the speed of the downstream puff is
affected by the upstream one and depends on their sepa-
ration. However the speed of the puff that is upstream is
unaffected and it has the same speed as an isolated puff,
with its Re dependence matching the results of [5]. In
the second type of measurement, a train of 100 equally
spaced puffs is generated and measuring the time delays
between each of the peaks in the pressure signal (corre-
sponding to puffs) yields the speed of each of the puffs.
Due to the repulsion, the first few puffs do spread out by
the time they reach the second sensor and are ignored for
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further processing, but the inter-puff distance of all the
other puffs is maintained. The experiment is repeated 10
times for the same inter-puff spacing and the velocity is
averaged over all the puffs to obtain a mean speed. As
each puff in the train has a puff upstream, their speed
is different from that of an isolated puff. The speed of a
puff as a function of distance from an upstream one can
be obtained by repeating this experiment for different
inter-puff spacings.

As a further check, this information can be used to
calculate the increase in relative separation between puffs
that are initially closely spaced, and the results are in
good agreement with the earlier measurements involving
only 2 puffs.

0

0.1

0.2

0.3

S
e
n
s
o
r

V
o
lt
a
g
e
 (

V
) a

Pressure Signal, Re = 1925, L = 75D

0

0.1

0.2

0.3

S
e
n
s
o
r

V
o
lt
a
g
e
 (

V
) b

Decays, Re = 1925, L = 410D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Time(s)

0

0.1

0.2

0.3

S
e
n
s
o
r

V
o
lt
a
g
e
 (

V
)

c Splitting, Re = 2175, L = 410D

FIG. S2 (a) A typical pressure trace from the sensor at 75D
for a puff train with an inter-puff spacing of 60D, at Re =
1925. (b). The same puff train at 410D showing two decays,
identifiable by the larger spacing at two locations, as com-
pared to the signal at 60D above. (c)A puff train with an
inter-puff spacing of 100D at Re = 2175 showing a smaller
than typical spacing at one location, indicating a puff split-
ting.
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FIG. S3 A straight line fit of the logarithm of survivors (puffs
that have survived without decaying) at different times (ob-
tained from the 4 measurement locations), showing an expo-
nential decay of survivors. The inverse of the slope is the
time-scale of decay. The figure is obtained from measure-
ments at Re = 1925 and an inter-puff spacing of 60D, some
pressure traces of which are shown in Fig.S2(a) and (b).

To determine the dependence of inter-puff spacing on

decay and splitting lifetimes, the same set-up was used,
but with 4 sensors at 75D, 410D, 73D and 1055D down-
stream of the perturbation point. A train of equally
spaced puffs with a specific spacing was generated and
the pressure traces recorded at each sensor. As men-
tioned previously, except for the first few puffs, the train
travelled downstream while maintaining the inter-puff
spacing, unless a splitting or decay occurred. Indeed, de-
cays and splittings were identified by significantly larger
or smaller gaps between adjacent puffs than the initially
chosen spacing. Examples of typical pressure traces are
shown in Fig. S2. Fig. S2(a) shows a portion of the puff
train consisting of 10 puffs with an inter-puff spacing of
60 D at Re = 1925, recorded at the first pressure sen-
sor, located just downstream (75D) of the perturbation.
Fig. S2(b) shows the same portion of the train at the
next sensor, located 410D downstream of the pertur-
bation point. Two decays can be identified due to the
larger spacing as compared to the original train. Simi-
larly, Fig. S2c shows the pressure trace at the same sen-
sor, but at Re = 2175, for an initial inter-puff spacing of
100D, where one splitting event can be identified due
to a smaller inter-puff spacing than originally chosen.
Thus, for a given puff train, the number of decays or
splittings at each sensor can be determined. In practice,
due to the faster than exponential decrease (increase) in
decay (splitting rates), there are practically only decays
for Re < 2030 and only splittings for Re > 2050, and
hence it suffices to count the number of puffs at each
sensor location to determine the number of decays (or
splittings) at each sensor.

With this information, the fraction that survive with-
out a decay or split can be plotted as a function of time
(equivalent to downstream location as the puffs advect
downstream at a well defined average speed). This re-
veals an exponentially decaying or memoryless distribu-
tion of the survivors allowing us to extract a time-scale
from a fit. Note that this is a slight modification of a
technique to obtain lifetimes that has become standard
for pipe flow; see, for example,[8]. Fig. S3 shows the sur-
vivor distribution for Re = 1925 and an inter-puff spacing
of 60, corresponding to the measurements whose pressure
traces are shown in Fig. S2a and b. These measurements
are repeated for different Re and inter-puff spacings to
yield characteristic decay and splitting times as a func-
tion of both puff spacing and Re.

Finally, by looking at the distribution of arrival times
of 1000 isolated puffs at these 4 locations, the diffusive
nature of the puff propagation was shown and the diffu-
sion coefficient calculated as a function of Re.

The long time-scale experiments to experimentally ob-
tain the steady-state turbulent fraction as a function of
Re require a much bigger system size and a tighter con-
trol on Re for long periods of time. As measurements
were carried out closer to critical as compared to [7], the
setup here is a modified version of the one used in that
study, resulting in a tighter control of Re and temper-
ature. A schematic of the set-up is shown as setup B
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in Fig. S1. The pipe had a nominal inner diameter of
D = 2mm and a total length of 18 meters, or 9000D.
However a determination of the diameter by measuring
the pressure drop across a section of the pipe using a pre-
cision, piezo-resistive, differential pressure sensor (model
PN1M from Senzors) gave a value of 1.992 mm and this
value is what is used in calculating Re. As before, this
consisted of glass pipe-sections joined together with cus-
tom made acrylic connectors, some of which had ports
for perturbing the flow or measurement of pressure. The
pipe is gravity-driven, with the working fluid, de-ionized
water, being supplied from reservoir that is more than
20 meters above the pipe. The reservoir is continuously
overflowing, which ensures a precise pressure-head that
drives the flow. The reservoir is mounted on motorized,
vertical guide-rails, permitting fine adjustments to the
height of the reservoir, and hence the flow rate and Re.
The convergent section through which the water enters
the pipe and the precise machining of the connectors en-
sures that the pipe remains laminar up to Re ≈ 5000,
which is far above the Re range studied.

The flow-rate is continuously measured to an accuracy
of better than 0.05% by collecting the water exiting the
pipe for a fixed amount of time and weighing it with
a precision electronic scale. RTD platinum probes were
used to measure the temperature at the inlet and exit
of the pipe. A little before entering the pipe, the water
passes through a heat exchanger, with an associated tem-
perature controller. As shown in the schematic, there is
an acrylic pipe with an diameter of 50 mm, that is co-
axial to the 2 mm measurement pipe and surrounds it.
Water, whose temperature is regulated by a temperature-
controller is circulated in the annular space between these
pipes which acts as a water jacket to regulate tempera-
ture variations of the measurement pipe. To allow a bet-
ter control, the outer pipe is heat-insulated by covering it
with standard pipe insulation. The two temperature con-
trollers (one for the working fluid and the other for the
water jacket) are used in a feedback loop with a target
of maintaining a zero temperature difference between in-
let and outlet of the the measurement pipe and a desired
value (usually 20 ◦ at the inlet. Both targets are achieved
to better than ±0.01◦ for as long as desired. The temper-
ature of the working fluid is taken to be the mean of the
temperatures at the two ends of the pipe. As with the
earlier constant flux set-up, the viscosity of the water is
determined by a fit to standard data. With this viscosity
and the measured flow-rate, the Re is calculated. Ex-
periments to measure the turbulent fraction close to the
critical point can take anywhere between several hours
to several weeks and it is important to maintain the Re
for such extended periods of time.In the course of the
experiment, the Re can change due to two reasons. One
is the temperature associated viscosity change, with a
change of 0.01◦ resulting in a change of around 1 in Re.
Another is the change in frictional drag due a change in
the number of puffs in the pipe due to splitting or decay,
with one extra puff causing a decrease of around 1 in Re.

A feedback loop counters any such deviation from the
set Re by an adjustment of the vertical position of the
reservoir and hence the flow-rate, in order to bring back
the Re to the set value. With this method, a long term
stability of the Re to better than ± 1 can be achieved.

The flow is perturbed 150D from entrance using the
same push-pull perturbation described earlier for the
pump driven set-up and shown in the schematic of
the perturbation mechanism in Fig.S1. The puffs are
monitored near the pipe entrance and exit using DP-
45 variable-reluctance differential pressure sensors from
Validyne, which measure the pressure across 8D. Specif-
ically, the locations are 245D and 8495D downstream
of the perturbation point, and are indicated in the
schematic by points S1 and S2 respectively

The procedure to determine the steady-state turbulent
fraction is as follows. A number of puffs, typically uni-
formly spaced, are generated using the perturbation and
serve as the initial condition. These puffs advect down-
stream. As each of them passes the pressure measure-
ment location S2, a peak is detected in the pressure sig-
nal. This peak detection automatically triggers the per-
turbation to generate a new puff near the inlet. Shortly
thereafter, the newly generated puff passes point P1, gen-
erating a peak in the pressure signal which confirms that
it was successfully generated. Thus, the pattern of puffs
passing the point P2 and exiting the pipe is generated
at the pipe inlet and verified at point S1. As puffs are
statistically identical, this procedure should not change
the statistical evolution of the flow. In this way, the evo-
lution of turbulence can be followed for long periods of
time till it reaches a steady-state. In this paper, we use
the puff density (number of puffs per unit length) as a
proxy for the turbulent fraction as the former quantity
is well defined while the latter one depends on the cut-
off chosen for differentiating laminar from turbulent flow.
The mean puff density at a given Re is calculated by sim-
ply counting the number of puffs in one period and then
averaging over long times in the steady state.

III. PUFF SIZES

In the main paper, we point out that, as is typical of a
phase transition, the microscopic rules such as puff inter-
actions or the diffusion coefficient but vary smoothly as
we pass the critical point and do not exhibit any sudden
change there. Here, we present additional evidence to
strengthen this claim by looking at typical puff widths
at different Re. Well separated (non-interacting) puffs
were triggered and the pressure signal recorded further
downstream. The pressure signals for 10 puffs were phase
averaged (by using the peak of the pressure signal as a
reference point), yielding an ensemble-averaged pressure
signal. This was repeated at several Re below and above
critical and the results are shown in Fig. S4. The width
of the pressure peak is a measure of the puff width, and
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a. b.

FIG. S4 Profile of a single puff as a function of Re, showing
puff widths at various Re straddling the critical point, show-
ing that the puff sizes change slowly and smoothly with Re.
(a) Experimental voltage signal from a pressure sensor (b)
Centreline velocities obtained from DNS
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FIG. S5 a. Instantaneous turbulent kinetic energy of the
perturbation averaged over cross-section of the pipe q(z, t) =∫
(u− ulam)2 d2r and the streamwise centerline velocity ucl

from a direct numerical simulation showing three interacting
turbulent puffs. u is the velocity field, ulam is the laminar
velocity field. b. Time averaged, in a co-moving frame, q and
ucl for the same simulation. While each puff is unique due
to a fully 3d and temporal dynamics (a), their time-averaged
counterpart are statistically equivalent (b). The spatially lo-
calized turbulent kinetic energy justifies the point-like particle
approach and the long tail of the centerline velocity perturba-
tion provides an insight into the origin of their interactions.

as is clear, this does not change appreciably with Re as
we pass through the critical point.

IV. PUFF-SPLITTING MODEL

In this chapter of the Supplementary Information, we
develop a theoretical description of the statistical me-

chanics of puffs near the critical Reynolds number. We
start with a description of turbulent puffs in a pipe that is
coarse-grained so that each puff is considered to be a sin-
gle particle that can move on a line or a one-dimensional
(1D) lattice. The turbulent puffs can spontaneously re-
laminarize (i.e. “die”), diffuse and split (i.e. “birth”). A
general configuration will be a gas of puffs that is very di-
lute near the laminar-turbulence transition, and becomes
increasingly dense as the Reynolds number is increased.
We wish to understand the functional form of this mean
density field, which we will sometimes call the turbulent
fraction. In addition to their intrinsic dynamics, puffs
are being advected downstream by the mean flow, which
we will take to be moving from left to right.
Systems of particles hopping predominantly in one di-

rection along a line, with strong repulsive interactions,
arise in many fields of physics, and are generally de-
scribed by a class of models known as asymmetric exclu-
sion processes (ASEP) [9, 10]. The variant of these mod-
els that is appropriate here as a minimal model is based
upon the totally asymmetric exclusion process (TASEP),
in which only unidirectional hopping is allowed. The
question that is usually asked of ASEP models is how is
the bulk dynamics of the particles affected by the bound-
ary conditions? In these models, particles are injected at
a given rate on the left and removed with a given rate
on the right of the system. In our case we are primarily
interested in the case of periodic boundary conditions.
Particles are, however, not conserved in our case: they
are born through splitting, and they die through decay.
Thus the appropriate model for puffs combines TASEP
with the additional birth and death processes of DP.
Let ni be the occupation number of the site i in a 1D

periodic lattice of N sites. Then the puff-splitting model
(ignoring for now puff-puff interactions) is given by the
following stochastic processes:

1. Puff at site i is removed with rate ωd (decay)

2. Puff at site imoves to site i+1, if that site is empty,
with rate p (propagation)

3. Puff at site i creates a puff at site i+1, if that site
is empty, with rate ωs (splitting)

To implement this model, random asynchronous up-
dating should be used, in which the three rate processes
are carried out on randomly chosen particles in random
order, with probabilities per unit time given by the coef-
ficients p, ωd and ωs.
The mean field equation for this process is given by

∂t⟨ni⟩ = −p⟨ni(1− ni+1)⟩+ p⟨ni−1(1− ni)⟩
−ωd⟨ni⟩+ ωs⟨ni−1(1− ni)⟩ (S1)

The first term describes the process in which a puff
hops away from site i onto the neighbouring downstream
site i+ 1, but only if the destination site is empty. This
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process happens with a rate p. If the puff does not hop,
it is effectively moving backwards (i.e. upstream) com-
pared to the mean flow of the puffs. The second process
is similar but is a flow onto site i from the upstream site
i− 1. Together these terms represent single puff hopping
unless blocked by a downstream puff. The third term
represents decay, and the forth term puff-splitting. Note
that this term resembles the second half of the puff hop-
ping process, but its effect is different because there is no
term which effectively removes the puff at site i, as does
the first term in equation (S1).

Living in one dimension, puff-puff interactions are very
strong, and there are two additional microscopic interac-
tions that need to be considered in addition to the fact
the puffs cannot pass through one another: a puff that is
upstream of another occupying its nearest-neighbour site
can neither split nor hop to the right, until the down-
stream puff has itself hopped downstream or decayed.
First, the lifetime of the puff that is downstream of its
nearest-neighbour will have a drastically shortened life-
time (by perhaps 5 orders of magnitude) compared to a
free puff. We will call this “suppression”; it arises from
the way in which a puff distorts the mean velocity pro-
file. Second, the puffs have a strong short-range repul-
sion, which we will call “pushing”: a puff that is created
by splitting will for a short distance experience a faster
downstream velocity that has the effect of separating it
quickly from its mother puff. If the daughter does not
get pushed then it will have a high likelihood of decaying
rapidly.

These interactions can be added to the simple puff-
splitting model by two additional rules. Suppression can
be modeled by assuming that the decay rate is much
greater if a puff is immediately downstream of another
puff, i.e. ωd → ω̃. Pushing can be modeled by introduc-
ing an increased hopping rate p̃ if a puff is immediately
downstream of another puff, i.e. p → r. For now, we will
not include these terms.

If we set p = 0, then this model describes purely split-
ting and decay. Since splitting followed by decay repre-
sents hopping (i.e. anisotropic diffusion), and there is a
limit of one puff per site, this model includes the four
basic processes of directed percolation (DP): diffusion,
de-coagulation, coagulation and annihilation [11]. For
ωd large enough, the ultimate fate of the system is to be
empty. As ωd becomes smaller, there will be a continuous
transition in the DP universality class to a state with per-
sistent mean number of particles ρ ≡ ⟨ni⟩ ∼ (ωc − ωd)

β ,
with β = 0.276 in 1D.

The question that we now address is how the additional
terms in the puff-splitting model modify the critical be-
havior from DP. We will answer the question by writ-
ing down a stochastic hydrodynamic model for the puff-
splitting model, and then analyze its critical behaviour
using renormalization group arguments.

A. Stochastic hydrodynamics for puff-splitting
model

The discrete stochastic puff-splitting model can be ex-
pressed as a field theory using standard techniques that

use the Doi formalism [12], followed by a Martin–Siggia–
Rose [13–15] transformation to a coherent state path inte-
gral [16]. We will not use that method here, although we
will need to use the result later. An alternative, shown in
the next Section, is to derive the stochastic equation by
writing down the master equation, and then performing a
Kramers-Moyal expansion to second order to derive the
corresponding Fokker-Planck equation, and thence the
Langevin equation [17]. In this coarse-grained formu-
lation that neglects higher order derivatives, the lattice
becomes a continuum (i → x). This amounts to writing
ni → ρ(x) and

ni+1 ≈ ρ(x) + ∂xρ(x) +
1

2
∂2
xρ(x) (S2)

and reading off the noise, to obtain

∂tρ = −ωdρ+
1

2
(p+ ωs)∂

2
xρ− (p+ ωs)∂xρ+ ωsρ(1− ρ)

+(2p+ ωs)ρ∂xρ−
ωs

2
ρ∂2

xρ+
√
ρ(1− ρ)η

(S3)

where η(x, t) is a white noise delta-correlated in space
and time. The dynamics is controlled by multiplicative
noise, which has the effect that the empty state is ab-
sorbing. This form of the noise arises because of the
rule that there can only be one particle per site. If this
were enforced by an explicit coagulation term of the form
2ni → ni +∅, the equations would be the same but the
minus sign in the noise term would be replaced by a plus
sign.

Equation (S3) is similar to the Langevin equation for
DP, but with the addition of three terms: the term pro-
portional to ∂xρ and the last two terms of second order
in ρ. The linear term arises because the puff dynamics
is diffusive (the second order term, linear in ρ) but in
a frame moving with the net velocity of the puffs. This
anisotropic diffusion can be removed by a Galilean trans-
formation into the comoving frame. The second term is
proportional to ρ∂xρ and has the functional form of the
advective nonlinearity in Burgers equation. Such terms
naturally arise in TASEP models, and loosely speaking
lead to shocks that model the bunching up of particles,
as occurs in traffic jams, transcription by ribosomes mov-
ing on mRNA etc. These shocks are regularized by the
higher order derivative terms, including the third extra
term and the linear diffusive term. We refer to the terms
ρ∂xρ and ρ∂2

xρ as Burgers-like terms. We will refer to
the terms ρ∂xρ and ρ∂2

xρ as Burgers-like terms, because
they are of the form density multiplying a derivative of
the density.
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B. Master equation for the puff-splitting model

In this Section, we derive equation (S3). The puff splitting model is based on the reactions of decay, hopping and
splitting process in one dimension:

Ai
ωd−−→ Ei, (S4)

Ai + Ei+1
p−→ Ei +Ai+1, (S5)

Ai + Ei+1
ωs−→ Ai +Ai+1, (S6)

where Ai denotes a particle at site i, Ei represents the vacancy at site i, and i = 1, 2, .., L. We introduce the
coarse-grained particle density centered at site i over a length scale of K lattice sites with a uniform kernel as ni,
specifically,

ni =
1

K

K/2∑
j=−K/2

Ni+j , (S7)

where Ni = 0, 1 is the particle number at each site i. We denote the state vector by n = (n1, n2, ..., nL)
T and define

the lattice density operator E±
i as

E±
i f(ni) = f(ni ±∆), (S8)

and the master equation can be represented as

∂tP (n, t) =
1

∆

∑
i

[
(Ei − 1)ωdni + (Ei−1E−1

i − 1)ωsni−1(1− ni) + (Ei−1E−1
i − 1)pni−1(1− ni)

]
P (n, t), (S9)

where ∆ = 1/K. By applying Kramers-Moyal expansion with truncation to the second order,

E±
i ≈ 1±∆∂ni

+
1

2
∆2∂2

ni
+ ..., (S10)

equation (S9) can be rewritten into a Fokker-Planck equation:

∂tP (n, t) = −
∑
i

∂(AiP )

∂ni
+

1

2
∆

∑
i,j

∂2(BijP )

∂ni∂nj
, (S11)

where

Ai = −ωdni − pni(1− ni+1) + (p+ ωs)ni−1(1− ni), (S12)

Bij = [ωdni + ωsni(1− ni+1) + pni(1− ni+1) + pni−1(1− ni)] δij + 2pni(1− nj)δj,i+1. (S13)

The corresponding Langevin equation in Ito’s sense is

∂tn = A(n) + ξ(t), (S14)

⟨ξi(t)ξi′(t′)⟩ = ∆Bii′δ(t− t′). (S15)

In the continuum limit in space, the density operator is defined as

Ẽ±
x f [ρ(y)] = f [ρ(y)±∆δ(y − x)], (S16)

and equation (S9) becomes

∂tP (ρ, t) =
1

∆

{∫
(Ẽx − 1)ωdρ(x)P dx

+

∫∫ (
ẼyẼ−1

x − 1
)
pρ(y) [1− ρ(x)] δ(x− y − ϵ)P dxdy

+

∫∫ (
Ẽ−1
x − 1

)
ωsρ(y) [1− ρ(x)] δ(x− y − ϵ)P dxdy

}
, (S17)

where ϵ is the lattice spacing.
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The Kramers-Moyal expansion gives

Ẽ±
x ≈ 1±∆

δ

δρ(x)
+

1

2
∆2 δ2

δρ(x)2
+ ..., (S18)

and with truncation to the second order, equation (S17) becomes

∂tP (ρ, t) ≈ −
∫

δ

δρ(x)
{−ωdρ(x− ϵ) + (p+ ωs) ρ(x− ϵ) [1− ρ(x)]− pρ(x) [1− ρ(x+ ϵ)]} dx

+∆

∫
δ2

δρ(x)2
{ωdρ(x) + (p+ ωs) ρ(x− ϵ) [1− ρ(x)] + pρ(x) [1− ρ(x+ ϵ)]} dx

+∆

∫∫
δ2

δρ(x)δρ(y)
{−2pρ(y) [1− ρ(x)] δ(x− y + ϵ)} dxdy. (S19)

By using

ρ(x± ϵ) ≈ ρ(x)± ϵ∂xρ(x) +
1

2
ϵ2∂xρ(x) + ..., (S20)

equation (S19) can be written into a Fokker-Planck equation:

∂tP (ρ, t) ≈ −
∫

δ

δρ(x)
[A(ρ, x)P ] dx+

1

2
∆

∫∫
δ2

δρ(x)δρ(y)
[B(ρ, x, y)P ] dxdy, (S21)

where

A(ρ, x) = −ωdρ(x) + ωsρ(x) [1− ρ(x)] +
1

2
ϵ2(p+ ωs)∂

2
xρ(x)

−ϵ(p+ ωs)∂xρ(x) + ϵ(2p+ ωs)ρ(x)∂xρ(x)−
1

2
ϵ2ωsρ(x)∂

2
xρ(x), (S22)

B(ρ, x, y) =
{
ωdρ(x) + (2p+ ωs)ρ(x) [1− ρ(x)] +

1

2
ϵ2(p+ ωs)∂

2
xρ(x)

−ϵ(p+ ωs)∂xρ(x) + ϵωsρ(x)∂xρ(x)−
1

2
ϵ2(2p+ ωs)ρ(x)∂

2
xρ(x)

}
δ(x− y)

−2p

{
ρ(x) [1− ρ(x)] + [1− ρ(x)]

[
−ϵ∂xρ(x) +

1

2
ϵ2∂2

xρ(x)

]}
δ(x− y + ϵ). (S23)

The corresponding Langevin equation in Ito’s sense is

∂tρ(x) = A(ρ, x) + ξ(x, t), (S24)

⟨ξ(x, t)ξ(y, t′)⟩ = ∆B(ρ, x, y)δ(t− t′). (S25)

By setting ϵ = 1, near transition ρ ≪ 1, one obtains

∂tρ ≈ −ωdρ+ ωsρ (1− ρ) +
1

2
(p+ ωs)∂

2
xρ− (p+ ωs)∂xρ

+(2p+ ωs)ρ∂xρ−
1

2
ωsρ∂

2
xρ+

√
aρ− bρ2η, (S26)

where η(x, t) is a Gaussian white noise and a and b are functions of ωd, ωs and p. The nonlinear term in the square
root that multiplies the white noise η can be replaced by

√
ρ near the transition where ρ → 0. This equation is of the

form of equation (S3).

C. Universality class of the puff-splitting model

The puff-splitting model without the Burgers-like
terms is in the universality class of DP. We now examine
whether or not the Burgers-like terms change the uni-
versality class, by calculating whether or not they are
relevant or irrelevant in the renormalization group sense
at the fixed point that controls DP. To do that, we will

use the field theoretic RG, in which the critical dynamics
of DP is generated by a Martin–Siggia–Rose action of the
form [16]

A(ρ, ρ̃) =

∫
ddx dt

[
ρ̃
(
∂t +D(r − ∂2

x)
)
ρ

−u3ρ̃(ρ− ρ̃)ρ+ u4ρ̃
2ρ2 +O(ρ5)

]
(S27)
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where ρ̃ is a so-called response field that arises during the
representation of the problem as a field theory, u3 and u4

are coupling constants of cubic and quartic terms, D is an
effective diffusion coefficient, and r is a control parameter
that vanishes at the critical point (for an excellent review,
see Ref. [16], pp. 173-174). The requirement that the
action be dimensionless implies that the dimensions of
the fields can be expressed in terms of the momentum
cut-off µ as follows: [x] = µ−1, [t] = µ−2, [ρ] = µd/2,
[D] = µ0, [r] = µ2, [u3] = µ2−d/2, [u4] = µ2−d.
The lowest order nonlinearity beyond free field theory

is the cubic term, whose scaling dimension is 2 − d/2,
implying that the critical behavior deviates from mean
field theory for d < 4 (for an introduction to the renor-
malization group for DP, see Ref. [16], p. 404 et seq.).
The cubic nonlinearity is the only contributor to the non-
analytic scaling behavior below four dimensions, and the
critical behavior can be calculated using (e.g. an expan-
sion in 4 − ϵ dimensions) (see (e.g.) [18]). The quartic
coupling constant u4 has scaling dimension 2 − d, so as
the momentum cut-off µ → ∞, the quartic coupling gets
weaker and weaker, and is irrelevant in the RG sense
at the four dimensional fixed point that controls the be-
havior for d < 4. Thus, even as low as d = 1, DP is
controlled by the cubic nonlinearity only. We now apply
the same reasoning to the Burgers-like terms in equa-
tion (S3), but work directly with the stochastic differen-
tial equation rather than the field theoretic action.

The stochastic differential equation corresponding to
the DP action of equation (S27) is [16]:

∂tρ = −D(r − ∂2
x)ρ− u3ρ

2 + ξ (S28)

⟨ξ(x, t)ξ(x′, t′)⟩ = 2u3ρ(x, t)δ(x− x′)δ(t− t′) (S29)

Note that the dimension of all the terms in the equa-
tion is µ2+d/2. Thus, to see how the Burgers-like terms
scale under renormalization, we calculate the coupling
constant dimensions using the known scaling dimensions
of space and the field ρ. Denoting the coupling constant
of the Burgers term as λ1, we equate

[λ1ρ∂xρ] = µ2+d/2 (S30)

to obtain

[λ1] = µ1−d/2 (S31)

At the fixed point in d = 4, this has negative scaling
dimensions and flows to zero as µ → ∞. We conclude
that this Burgers-like term is irrelevant for DP. Similarly,
the coupling constant λ2 for the Burgers-like term ρ∂2

xρ
scales as µ−d/2 and thus is also irrelevant at the DP fixed
point. These results are consistent with earlier studies
briefly mentioned in Ref. ([19]) (p. 471 and 477).

D. Effects of puff suppression and pushing

The experiments suggest that puffs that are close and
downstream of another puff, experience an additional

rate of decay, ω̃ and a higher velocity to the right. We
can model suppression in the stochastic hydrodynamic
model by a term that in mean field theory follows:

∂t⟨ni⟩ = −ω̃⟨ni−1ni⟩ (S32)

and model pushing by an enhanced hopping at a rate r
for nearest neighbour downstream puffs:

∂t⟨ni⟩ = −r⟨nini−1(1− ni+1)⟩+ r⟨(1− ni)ni−1ni−2⟩.
(S33)

Going to the continuum stochastic hydrodynamical de-
scription, these terms will all be represented by high or-
der operators of the form

Iαβγ ≡ λαβγρ
α
(
∂β
xρ

)γ
(S34)

where the coupling constants λαβγ scale as µyαβγ with

yαβγ = 2(2− α− γ)− βγ. (S35)

For α, β, γ ≥ 1, yαβγ < 0, so the effect of puff suppres-
sion and pushing, at least at large scales is irrelevant and
should not change the universality class of the transition
from DP.

V. NUMERICAL SIMULATIONS OF THE
PUFF-SPLITTING MODEL

To verify these predictions, we have performed numer-
ical simulations. The RG calculation reveals the asymp-
totic critical scaling, but in practice there might be slow
crossovers to the true critical behavior, due to the finite
length of a pipe and the finite time for sampling puff
dynamics. These effects will be acute near any putative
critical point, and so it is important to be able to predict
how these effects will be manifested in experiments and
simulations. In addition, the divergence of the relaxation
time near the critical point means that simulations may
be biased by long-lived transients, and these need to be
taken into account also.
To rule out sensitive dependence on the numerical im-

plementation, two different computer codes with different
update rules and parameter sets were used to check the
results. In the first, a minimal discrete model was used
to check numerically the conclusions based on perturba-
tive RG arguments given above. In the second, a contin-
uum stochastic dynamics simulation was performed, with
a greater level of realism regarding the interactions be-
tween the puffs, as determined experimentally. In both
simulations, we observe the emergence of a jammed or
crystalline phase above the turbulence transition due to
the “traffic jams” experienced by puffs. As the transi-
tion is approached from higher Reynolds numbers, the
crystalline phase effectively melts due to strong fluctua-
tions through the appearance of interspersed disordered
regions. Both simulations, when analysed properly, show
that the asymptotic universality class is directed perco-
lation, but we identify strong artifacts that complicate
the direct observation in experiments of the asymptotic
critical scaling.



10

A. Lattice model of puff dynamics

In order to understand in detail how the phase diagram
of interacting puffs depends on individual puff splitting
and decay rates, we constructed an additional minimal
model that we call the lattice model to differentiate it
from the continuum minimal described in the main text.

This minimal model is a computationally-efficient lat-
tice model of the puff interaction dynamics uncovered
in our experiments, closely related to the statistical hy-
drodynamics model. This model permits even greater
scale-up than the continuous puff model, and allows us
to readily scan through the respective strengths of each
interaction and quantify its effects on the DP scaling. In
the coarse grained model, we simulate the puff motion by
right hopping particles, which push and suppress neigh-
bors and split and decay similarly to the rules described
above and explained in the SI. Near the critical point, the
puff density is low and τd and τs are both much larger
than the time it takes for a puff to diffuse a distance simi-
lar its spatial extent. Thus we can ignore the puff motion
below 12D and use this scale as our fundamental lattice
unit and the step size for the puff hopping.

1. Detailed description of lattice model

The discrete model consists of a lattice of length L.
The dynamics is controlled by a set of parameters

ωs the puff splitting rate
ωd the puff decay rate
p the puff hopping rate

λpush pushing length-scale
qsup suppression parameter for puffs within a dis-

tance λpush

qpush pushing parameter for puffs within a distance
λpush

In the basic version of the model, particles hop to the
right with a probability p in each time step. We permit
puff suppression by allowing a right hopping particle to
invade an occupied neighboring site and thereby elimi-
nate a downstream puff/particle. Note that we have also
considered a variant of the model where we do not per-
mit puff suppression, meaning that particles do not hop if
there would be a collision with an already occupied site.
The lifetime τd,∞ and time between splitting events, τs,∞,
are given by a phenomenological fit to experimental data

τd(Re) = exp
[
exp(0.005898 Re− 9.1871)

]
,

The corresponding expression for the splitting rate is
given by

τs(Re) = exp
[
exp(−0.003165 Re + 9.2871)

]
.

The simulation of the model is performed using one of two
update rules, an upstream update rule, where the puffs

in each time step are updated sequentially from the left
to the right and a stochastic update rule (producing sim-
ilar results (in almost all circumstances)) where puffs are
picked randomly one-by-one and updated accordingly.
The dimensionless diffusion constant D of the right

hopping process is

D̃ =
p(1− p)

2

2. Puff-pushing and suppression

The puff-pushing alters the hopping probability p of
a puff xi depending on the distance |xi − xi−1| to an
upstream puff xi−1. If that distance is smaller than some
pushing length λpush, the hopping probability is set to
one. Thus, the hopping probability of a puff at xi is p if
|xi − xi−1| > λpush and qpush = 1 otherwise. Similarly,
we use the following expression for the probability of puff-
suppression: when a puff is within a distance d < dsup
from an upstream puff, the suppression probability at xi

is zero if |xi − xi−1| > λpush and qsup otherwise. For
the phase diagram of the puff density in the main paper,
qsup=2e-5.

3. Comparison to experimental values

In this section, we show how to relate the parameters
in the discrete model to those in the experiments and
continuous model. The experiments have the following
characteristic parameters

D∗ 4e-3 m
U∗ 0.4995 ms−1

L∗ 6.3e-5 m2s−1

T ∗ 8e-3s =(D∗)/(U∗)

In the experiments, a puff has a spatial extent of λ =
12D∗. For a pipe of length 7800D and with a push-
ing zone reaching out to λpush = 4λ, a system being
in the perfect puff-crystal state would contain around
7800/48 = 162 puffs. If we convert these numbers to
units of the discrete model, the corresponding system
size would be 162λpush/λ lattice units. We can perform
meaningful simulations down to values of λpush = 2λ i.e.
a discrete system representing the experimental system
would consist of around 350 lattice units.
Regardless of the model, the scaling of the dimension-

less variables should result in the same variables with
dimensions, e.g.

L∗ =
p(1− p)

2

λ2

τ
(S36)

Here λ is a characteristic length scale and τ a charac-
teristic time scale for the model.
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All the relevant timescales in the model are scaled with
this length and time, where e.g. dimensionless reaction
rates become

ωdecay(Re) =
τ

τdecay(Re)

ωsplit(Re) =
τ

τsplit(Re)

The scale parameters are determined by matching the
model to the characteristics of the experiment. First we
choose our length scale to be as large as possible with-
out losing the microscopic details, e.g. the length scale
should be smaller than the pushing distance such that
puff-pushing is resolved. Here we choose

λ = 12 D∗,

i.e. the spatial extent of a puff. We choose p = 0.5 and
therefore our timescale follows from equation (S36),

τ =
p(1− p)

2

λ2

L∗ . (S37)

Note that it is computationally advantageous to use as
large as possible a diffusion constant, which would mean
p = 0.5.
With this choice of parameters, a puff would at Re =

2039 diffuse a length ℓd between splitting or decaying
events,

ℓd = λ

√
p
τd(Rec)

τ
= 4900λ = 19m (S38)

or ∆t = 5 · 107τ = 1.2 · 108s. At Re = 2050, the scales
separating the splitting events are ∆t = 2.4 · 107τ and
ℓd = 1744λ.
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FIG. S6 Numerical simulations of the average density in the
lattice model for different values of the system size L.

4. Finite-size analysis in the lattice model

It is well established that to overcome the difficulty of
identifying the critical point and measuring critical ex-
ponents in simulations one should use finite-size scaling
[18, 20]. In this section, we perform finite-size scaling
analysis on the lattice model by adopting the procedure
in the contact process model by Tomé and de Oliveira
[21]. The idea is to remove the absorbing state by for-
bidding the last particle to decay, and therefore the be-
havior in the subcritical regime becomes continuous and
scalable due to the finite-time effect. The density calcu-
lated in the numerical simulations as a function of Re is
shown in Fig. S6. The scaling relation of the first and
the second moment of the density can be written as

⟨ρ⟩ = L−β/ν⊥ F
(
ϵL1/ν⊥

)
, (S39)

⟨ρ2⟩ = L−2β/ν⊥ F̃
(
ϵL1/ν⊥

)
, (S40)

where ϵ = Re−Rec and F and F̃ are universal functions.
Therefore the reduced second-order cumulant

U =
⟨ρ2⟩ − ⟨ρ⟩2

⟨ρ⟩2 (S41)

is independent of the system size L at the critical point
which can be read off in Fig. S7. In the figure, we see that
the reduced second-order cumulant starts to intersect at
a unique Re for large enough values of Re, as expected
by theory.
The stationary probability in the scaling form becomes

P (ρ, ϵ, L)dρ = FP

(
ρLβ/ν⊥ , ϵL1/ν⊥

)
Lβ/ν⊥dρ,(S42)

where the universal function FP shows data collapse in
the numerical simulations (Fig. S8). Therefore from the
identified critical point, the critical exponent for the den-
sity in the lattice model is confirmed to be same as the
1 + 1 DP as shown in Fig. S9.
We performed the numerical simulations on a periodic

lattice of length L (see Fig. S10). In addition to the
nearest-neighbor rules propagation, decay and splitting
described above, additional rules are implemented mod-
eling suppression and pushing. Specifically, in each time
step all puffs on the lattice are submitted randomly to
one of three actions, move, split and decay. After we
have picked a given action, we execute it with a proba-
bility computed from predefined rates. The move shifts
a puff on site i one lattice unit ahead at a rate p provided
that the site i + 1 is vacant. A splitting event of a puff
on site i introduces a new puff either at site i+ 1 or site
i + 2 with pre-defined rates ωs and ωpush, respectively.
The push is only possible if the sites i+1 and i+2 are va-
cant. Please note that we could instead have introduced
the new puff on either of the sites i− 1 or i− 2 without
changing quantitatively the dynamics. A puff on a site
i decays with a rate ωd if the site i + 1 is vacant. Oth-
erwise it decays at a higher rate ω̃. We then performed
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FIG. S7 The reduced second-order cumulant calculated in
the numerical simulations of the lattice model as a function
of Re and system size L. For sufficiently large L, the curves all
intersect at a unique value of Re, thus identifying the actual
critical Re that would occur in an infinite system. which is
independent of the system size at the critical point. The first
and second order moments were computed by averaging over
107 time steps after an initial transient of 5*106 time steps.

FIG. S8 Data collapse of rescaled probability density in the
numerical simulations of the lattice model. The probability
was estimated by sampling over 107 time steps and after an
initial transient of 5*106 time steps

the simulations for different systems sizes and for a given
number of time steps. We output the density of puffs on
the lattice at regular time steps and check whether the
system has collapsed into the absorbing state. We also
take care to remove long-lived transients, and only take
data once the transients have decayed. This required us

FIG. S9 The average density at the critical point in the nu-
merical simulations of the lattice model. The fitted solid line
has a slope of −β/ν⊥ with ν⊥ ∼ 0.109 which is consistent with
the known critical exponents of 1+1 DP. The average density
was computed from the simulations presented in Fig. S8.

FIG. S10 Numerical simulations of the lattice model for sys-
tems respectively below (left panel) and above (right panel)
the critical point. Clearly visible above the critical point
are traffic jams of puffs, forming a crystalline phase, inter-
spersed with regions of disordered puffs. As the transition is
approached from above, the disordered eventually dominate,
leading to the pure DP behavior at the critical point. In these
simulations, ωd = ω̃ = 0.01, p = p̃ = 0.5, and ωpush = ωs

with ωs = 0.0175 in the left panel and ωs = 0.0375 in the
right panel.

to run as much as 107 time steps before equilibration,
when close to the transition.

The results of our simulations are summarized in
Fig. S11. The turbulent fraction ρ varies with the split-
ting rate (ωs − ωc)

β with 0.27 < β < 0.285, consistent
with the expectation from DP. We have verified that the
puff dynamics is in a range where there are strong push-
ing and “traffic jam” effects.
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FIG. S11 Turbulent fraction ρ as a function of splitting rate,
for a system size L = 3200 and averaged over 400 simulations
and after a transient of T = 107 time steps. The vertical axis
is the turbulent fraction ρ1/β where β has been estimated by
a linear model whose residual is shown as function of β in
the inset. The value of β = 0.278 used in the vertical axis
varies slightly but has a sample variation in the range 0.270
to 0.285, which is consistent with the known value β ≈ 0.276
for DP. In these simulations, ωd = 0.04, ω̃ = 0.2, p = r = 0.5,
and ωpush = ωs as on the abscissa.

B. Continuum model of puff dynamics

In our continuum model, each puff is considered a point
particle interacting with its closest neighbors, using the
measured effective potential between puffs. We solve the
equation of motion for each puff in the frame co-moving
at v∞

dxi

dt
= vpuff(xi − xi−1) +

√
2Dpuffξi(t) (S43)

where xi is the streamwise coordinate of the ith puff,
vpuff(xi − xi−1) is the pushing speed of puff i as a re-
sult of puff i − 1 as measured in (S44), and ξi(t) is a
Gaussian white noise with mean zero and standard de-
viation 1, thus modeling the random walk of an isolated
puff with an effective diffusion coefficient Dpuff . In ad-
dition to equation (S43), each puff experiences decay
and splitting with rates τd,i = τd(Re, xi − xi−1) and
τs,i = τs(Re, xi+1 − xi) respectively, accounting for the
presence of an upstream/downstream puff as measured
in the experiment.

The pushing speed, vpuff , is well-described by an expo-
nential decay:

vpuff(l)− v∞ = A exp(−l/lc), (S44)

with A = 0.22, lc = 12 and v∞ is the travelling speed of
an isolated puff.

1. Puff diffusion coefficient

1800 1900 2000 2100 2200
0

0.05

0.075

0.025

FIG. S12 Evolution of the effective diffusion coefficient ver-
sus Re. The dashed line indicates the choice made for the
simulation of the continuous model. The diffusion coefficient
is estimated from the evolution of the variance of the time
of arrival distribution of 1000 puffs. Data are represented by
their best fit ± their 95% confidence interval.

Measuring the evolution of the arrival time distribution
at various location, we have been able to confirm that the
puff propagation is purely diffusive. We could therefore
measure an effective diffusion coefficient Dpuff for vari-
ous Re (Fig. S12). This diffusive coefficient is decreasing
with Re before reaching a plateau for Re ≳ 2000. The
higher value for low Re is understood in terms of puff sta-
bility. For Re = 1800, a puff will experience many near-
relaminarization events before eventually relaminarizing.
During such events, the puff energy will decrease sub-
stantially and its speed will increase accordingly. This
translates into an increased diffusion coefficient. In the
transitional range (2000 < Re < 2100), the puff diffu-
sion coefficient is nearly constant around Dpuff = 0.015
(dashed line in Fig. S12) and therefore, for simplicity, we
have chosen not to use a Re-dependent diffusion coeffi-
cient in the model and used the value which is approxi-
mately constant for the range of Re of interest here.

2. Life and splitting times

A key feature of turbulent puff in pipe flow is their
memoryless nature, ie. their life and splitting time statis-
tics follow an exponential distribution. It is therefore
possible for each Re to define a characteristic life and
splitting time. Experiment [22] indicates that these times
for the decay and splitting of an isolated puff depend on
Re super exponentially, a result in agreement with theo-
retical expectations [23] (for a summary of recent work,
see [24]). Here, we determine how the presence of a neigh-
boring puff changes these statistics.
We measured puff lifetime and splitting time distribu-

tions for puff trains with different spacing and checked
that each distribution remains exponential. Fig. S14.a
shows the evolution of the life time (circle) and split-
ting time (square) with Re for different puff to puff dis-
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FIG. S13 Spacetime plots of the local puff density ρ at (from left to right) increasing Reynolds numbers for the continuous
numerical model. Left panel shows subcritical behaviour (Re = 2040.0), while central panel is at Re = 2040.22 ∼ Rec and right
panel is above the critical point (Re = 2040.6).
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FIG. S14 a. Lifetime (circles) and splitting time (square) for
various puff-to-puff distances l. Solid lines indicates a super-
exponential fit to the data. b. Coefficient A and B of the
super exponential fit log (log (τ)) = A Re + B for life times.
c. Coefficient A and B of the same super exponential fit for
splitting times.

tances, l. We note that for each l the Re dependence
remains super exponential. For each spacing we fit the
Re dependence as log (log (τ)) = A Re + B. Fig. S14.b

and S14.c show the dependence of A and B with l for
decay and splitting respectively. In both cases we de-
cided to fit it with an exponentially decaying function
A − A∞ ∝ exp(−l/lc) where lc = 12 was chosen to cor-
respond to the characteristic distance identified in the
pushing interaction, in order to limit the number of free
parameters.
Eventually, the fit was done using a global non-linear

fit on all data using the fitting function

log (log (τ)) = (A∞+A exp(−l/lc)) Re+(B∞+B exp(−l/lc))

where lc = 12 was imposed. The best fit gave the follow-
ing values where superscript l, and s respectively stand
for lifetime and splitting time.

A∞,l = 5.898 10−3 A∞,s = −3.165 10−3

B∞,l = −9.187 B∞,s = 9.287
Al = −3.687 10−2 As = 4.714 10−3

Bl = 67.45 Bs = −8.583

Representative spacetime plots of the puff configura-
tions for increasing Re are shown in Fig. S13. The ex-
treme sensitivity of the puff density to Re is evident,
reflecting the fact that the critical region for the laminar-
turbulent transition is very small.
The A∞ and B∞ coefficients are to be compared with

those found in Avila et al. [22]. Although slightly dif-
ferent, they remain within the error bars and were the
ones we used for building the model. This anecdotal
and seemingly minor difference has actually far reaching
consequences as it changes the Reynolds number Re×
where life and splitting times are equal. As a conse-
quence, it dictates the value of the DP critical Reynolds
number Rec. This makes a direct comparison with ex-
perimental data extremely sensitive to the values of Re×
and explains the shift we had to impose in Fig. 3.a of
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the main paper. Here, we should emphasize the differ-
ence between accuracy and precision. While it is easy to
get reproducible experimental conditions when control-
ling temperature within a fraction of a degree and using
the same experimental set-up, it is difficult to ensure ab-
solute accuracy across different experiments. This has
various causes such as absolute calibration of tempera-
ture sensors and accuracy of glass tubing. Once acknowl-
edged, the agreement between the continuous model and
the experimental turbulent fractions (measured in a dif-
ferent set-up) is excellent.

Finally, the choice of the fitting function is not unique
and has no physical support other than being short range
and therefore decaying exponentially. We have tested
other fitting functions such as error functions but did
not find any qualitative differences. Therefore the main
outcome from the continuous model, the DP phase tran-
sition, is robust with respect to the functional form we
choose to fit our experimental data.

3. Significance and details on errors estimation

Life time and splitting time for a given (Re, l) pair is
estimated by fitting a Poisson distribution to the surviv-
ability/splitting distribution. The number of puffs used
to build the distribution is given in tables I and II. The
error is estimated by calculating the 95% confidence in-
terval of the fit.

Re l τlife ∆τlife Npuff

1875 30 3.06e+02 1.91e+02 3900
1875 39 4.50e+02 9.12e+01 4800
1875 50 5.93e+02 5.40e+01 4500
1875 59 6.12e+02 4.87e+01 4500
1875 79 6.80e+02 5.00e+01 4600
1875 99 6.71e+02 1.44e+01 4600
1875 149 7.77e+02 2.68e+01 4600
1900 29 4.13e+02 4.65e+02 3300
1900 39 8.17e+02 2.19e+02 3600
1900 49 1.26e+03 8.91e+01 3500
1900 59 1.53e+03 1.24e+02 3400
1900 79 1.76e+03 1.22e+02 3200
1900 98 1.79e+03 1.72e+02 3000
1900 148 1.85e+03 9.98e+01 4400
1922 29 5.83e+02 7.70e+02 4400
1922 39 1.72e+03 2.23e+02 5100
1922 49 2.90e+03 5.45e+02 5100
1922 59 4.14e+03 4.15e+02 4800
1922 78 5.30e+03 4.03e+02 4600
1922 97 5.30e+03 4.48e+02 4900
1922 147 5.51e+03 3.19e+02 3900
1945 29 7.88e+02 8.83e+02 5000
1945 39 3.50e+03 4.55e+02 4200
1945 48 7.43e+03 2.09e+03 5100
1945 58 1.43e+04 3.55e+03 6000
1945 77 1.75e+04 2.18e+03 5000
1945 97 2.19e+04 2.97e+03 5000
1945 145 1.93e+04 9.59e+03 5600
1970 29 1.23e+03 8.95e+02 8300
1970 39 1.20e+04 3.66e+03 7200
1970 48 2.48e+04 7.09e+03 7000
1970 57 5.83e+04 1.27e+03 7000
1970 76 8.90e+04 6.55e+03 7000
1970 95 8.58e+04 9.98e+03 5000
1970 144 8.08e+04 7.94e+04 4900
1990 29 1.90e+03 8.38e+02 14600
1990 38 2.73e+04 8.20e+03 14300
1990 48 6.30e+04 3.33e+04 11000
1990 57 1.98e+05 5.81e+04 17000
1990 76 3.35e+05 1.52e+05 17000
1990 95 4.89e+05 1.64e+05 18000
1990 142 7.40e+05 6.20e+05 12200
2015 29 3.09e+03 7.87e+02 12600
2015 38 7.17e+04 2.18e+04 12100
2015 47 2.64e+05 2.11e+05 12000
2015 57 1.70e+06 5.36e+05 12000
2015 75 1.45e+06 1.20e+06 12000
2015 141 2.85e+06 2.39e+06 13000

TABLE I Details of the statistical analysis for measuring the
life time of a puff. Npuff corresponds to the number of puffs
generated to build the survivability distribution.
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Re l τsplit ∆τsplit Npuff

2084 46 3.63e+06 1.33e+06 47000
2084 56 2.61e+06 1.10e+06 44000
2084 139 3.58e+06 3.01e+06 32000
2106 37 3.05e+06 1.49e+06 41000
2106 46 1.65e+06 1.11e+06 41000
2106 55 9.00e+05 1.73e+05 38000
2106 73 1.45e+06 9.93e+05 21000
2106 92 9.76e+05 3.41e+05 20000
2106 138 1.11e+06 2.33e+05 28000
2130 37 8.84e+05 2.66e+05 31000
2130 46 6.26e+05 2.94e+05 30000
2130 55 3.99e+05 2.90e+05 26000
2130 73 4.41e+05 1.68e+05 11000
2130 91 3.56e+05 1.57e+05 11000
2130 137 2.72e+05 1.31e+05 8000
2153 37 3.97e+05 1.62e+05 15000
2153 45 1.75e+05 6.11e+04 15000
2153 54 1.80e+05 5.82e+04 15000
2153 72 1.36e+05 2.36e+04 5000
2153 90 1.63e+05 1.56e+04 5000
2153 136 1.22e+05 6.73e+03 5000
2175 36 1.36e+05 5.56e+04 5000
2175 45 8.01e+04 3.52e+04 5000
2175 54 6.12e+04 6.58e+03 5000
2175 72 6.49e+04 2.03e+04 5000
2175 90 6.93e+04 1.16e+04 5000
2175 135 7.34e+04 2.50e+04 5000
2200 36 6.34e+04 9.86e+03 5000
2200 45 4.06e+04 6.26e+03 5000
2200 54 2.94e+04 5.03e+03 5000
2200 72 2.99e+04 9.44e+02 5000
2200 89 2.57e+04 4.12e+03 5000
2232 36 2.82e+04 1.33e+04 3000
2232 45 1.62e+04 4.34e+03 3000
2232 54 1.18e+04 1.57e+03 4900
2232 71 1.09e+04 1.12e+03 4900
2232 89 1.06e+04 1.02e+03 4900
2232 134 8.93e+03 3.68e+03 4900
2261 36 1.26e+04 4.08e+03 1000
2261 45 7.68e+03 4.16e+02 1000
2261 54 6.09e+03 1.59e+03 4900
2261 71 5.14e+03 5.12e+02 4800
2261 89 5.28e+03 9.39e+02 4900
2261 133 4.90e+03 8.57e+02 4900

TABLE II Details of the statistical analysis for measuring
the splitting time of a puff. Npuff corresponds to the number
of puffs generated to build the splitting distribution.

Re ρ ρmin ρmax ∆t N
2040.21 1.51e-04 9.72e-05 2.41e-04 5.0e+11 499998
2040.22 5.61e-04 4.94e-04 6.34e-04 5.0e+11 499998
2040.23 7.10e-04 6.32e-04 7.94e-04 3.9e+11 386701
2040.24 8.54e-04 6.39e-04 1.11e-03 2.5e+11 249999
2040.26 9.93e-04 8.21e-04 1.19e-03 2.0e+11 199998
2040.28 1.16e-03 9.70e-04 1.34e-03 2.0e+11 199998
2040.30 1.25e-03 1.09e-03 1.41e-03 5.0e+10 49999
2040.40 1.64e-03 1.52e-03 1.79e-03 3.5e+10 34877
2040.50 1.92e-03 1.81e-03 2.05e-03 1.5e+10 15316
2040.60 2.15e-03 2.05e-03 2.28e-03 9.3e+09 9324
2040.70 2.39e-03 2.29e-03 2.50e-03 7.4e+09 7422
2040.80 2.61e-03 2.51e-03 2.71e-03 5.0e+09 5018
2040.90 2.79e-03 2.68e-03 2.88e-03 3.4e+09 3414
2041.00 3.00e-03 2.94e-03 3.07e-03 1.7e+09 1692
2042.00 4.49e-03 4.41e-03 4.58e-03 1.3e+09 1279
2043.00 5.67e-03 5.60e-03 5.73e-03 1.2e+09 1165
2044.00 6.61e-03 6.53e-03 6.67e-03 1.0e+09 1031
2045.00 7.43e-03 7.36e-03 7.50e-03 9.3e+08 931
2046.00 8.12e-03 8.05e-03 8.17e-03 7.5e+08 752
2047.00 8.73e-03 8.68e-03 8.79e-03 6.7e+08 669
2048.00 9.26e-03 9.21e-03 9.33e-03 6.4e+08 644
2049.00 9.76e-03 9.72e-03 9.82e-03 6.1e+08 606
2050.00 1.02e-02 1.01e-02 1.03e-02 5.1e+08 514
2052.00 1.10e-02 1.09e-02 1.10e-02 4.6e+08 464
2055.00 1.20e-02 1.19e-02 1.20e-02 4.2e+08 420
2060.00 1.32e-02 1.32e-02 1.33e-02 3.7e+08 371
2065.00 1.42e-02 1.42e-02 1.42e-02 3.4e+08 340
2070.00 1.50e-02 1.50e-02 1.51e-02 3.5e+08 349
2080.00 1.63e-02 1.63e-02 1.64e-02 3.3e+08 328
2090.00 1.74e-02 1.74e-02 1.74e-02 2.8e+08 282
2100.00 1.82e-02 1.82e-02 1.83e-02 3.4e+08 342

TABLE III Details of the statistical analysis for measuring
the equilibrium puff density ρ. The puff density is time aver-
aged with ∆t the duration of the interval and N the number
of samples.
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VI. DATA AND CODE AVAILABILITY
STATEMENT

All experimental and computational data pre-
sented in this paper, the codes used to gener-
ate those data and the codes and scripts used
to generate the figures are available online in
the Zenodo repository 10.5281/zenodo.10308791 at
https://zenodo.org/doi/10.5281/zenodo.10308791
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