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The method of self-consistent expansions is a powerful tool for handling strong coupling problems that might
otherwise be beyond the reach of perturbation theory, providing surprisingly accurate approximations even at low
order. First applied in its embryonic form to fully-developed turbulence, it has subsequently been successfully
applied to a variety of problems that include polymer statistics, interface dynamics, and high-order perturbation
theory for the anharmonic oscillator. Here, we show that the self-consistent expansion can be applied to singular
perturbation problems arising in the theory of partial differential equations in conjunction with renormalization
group methods. We demonstrate its application to Barenblatt’s nonlinear diffusion equation for porous media
filtration, where the long-time asymptotics exhibits anomalous dimensions that can be systematically calculated
using the perturbative renormalization group. We find that even the first-order self-consistent expansion, when
combined with the Callan-Symanzik equation, improves the approximation of the anomalous dimension obtained
by the first-order perturbative renormalization group, especially in the strong coupling regime. We also develop
a field-theoretic framework for deterministic partial differential equations to facilitate the application of self-
consistent expansions to other dynamic systems and illustrate its application using the example of Barenblatt’s
equation. The scope of our results on the application of renormalization group and self-consistent expansions
is limited to partial differential equations whose long-time asymptotics is controlled by incomplete similarity.
However, our work suggests that these methods could be applied to a broader suite of singular perturbation
problems such as boundary layer theory, multiple scales analysis, and matched asymptotic expansions, for which
excellent approximations using renormalization group methods alone are already available.
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I. INTRODUCTION

For most physical systems, exact solutions are unattain-
able. Perturbation theory is a practical approximation ap-
proach that treats the full system as a small deviation from an
exactly solvable base system. By expanding in powers of the
small perturbation and solving corrections to the base system
order by order, the solution is constructed as a series in the
perturbation strength.

Unfortunately, naive perturbation theory encounters lim-
itations in numerous scenarios, in particular those where
individual terms in the expansion are divergent as an asymp-
totic limit is taken (for example, long time) [1–6]. In addition,
even if the individual terms are finite, the perturbation series
may itself be divergent [7–12]. To address these challenges,
a variety of methods have been developed by applied math-
ematicians, engineers, and physicists that effectively resume
the perturbative solution, thus removing divergences and en-
abling the accurate determination of asymptotic forms. A
necessarily brief list of examples where these methods have
found success include renormalization and the short dis-
tance behavior of quantum field theory (specifically quantum
electrodynamics), where perturbative renormalization group
(RG) methods were originally invented and deployed [13–16],
and critical behavior at phase transitions, where statistical

field theory predicts anomalous dimensions and departures
from mean field theory exponents [17–20]. These field the-
ory examples all exhibit scale invariance, but more recently
it was recognized that partial differential equations can also
exhibit anomalous dimensions arising in scale-invariant sim-
ilarity solutions that cannot be constructed by elementary
methods related to dimensional analysis and simple analyt-
icity assumptions [21–23]; renormalization group methods
have been successfully applied here too [20,23–28]. Fi-
nally, we mention more complex deterministic differential
equation problems with multiple scales and boundary lay-
ers arising in fluid mechanics and other areas of continuum
mechanics, where matched asymptotic expansions, singular
perturbation theory, and even renormalization group methods
have been used [4,6,10,11,20,29–34] and problems where per-
turbation theory is itself unable to account for intrinsically
nonperturbative singular phenomena, where methods based
on exponential asymptotics beyond all orders [9,11,12,35]
have been developed. Among the approximation methods ca-
pable of handling difficult perturbation problems, we mention
large-order perturbation theory [16,36], exact renormaliza-
tion group [36–40], and resurgence theory [41,42]. Despite
the specific successes of these and other methods, there is
still a need for simple but accurate methods that work even
for strong coupling problems and are capable of detecting
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subtle singular features that are hard to capture by existing
techniques.

In this paper, we develop such an approach, bringing to-
gether the renormalization group framework [20,24–28] with
a lesser-known approximation method known as the self-
consistent expansion (SCE) that has in one form or another
been rediscovered several times in different contexts, perhaps
beginning with the work of Edwards, Herring, Phythian, and
Kraichnan in turbulence theory [43–47], several works in the
context of interface dynamics and other fields [48–53], and,
as we will mention below, arguably in Bogoliubov’s work on
interacting Bose gases [54]. We will introduce this approach to
approximation theory below, but for now, we simply mention
that self-consistent expansions have been shown to be unex-
pectedly effective in tackling strong coupling problems. Thus,
it is a natural question to ask whether or not the self-consistent
expansion method can be applied to problems with anomalous
dimensions, thus improving the accuracy of methods such as
the ε expansion in renormalization group (RG) theory [19].
The new ingredient added here is to implement the SCE
method starting with a variational form inspired by RG meth-
ods, in order to further improve the RG approximant for the
singular long-time behavior of nonlinear partial differential
equations.

The central strategy of the self-consistent expansion is to
impose ad hoc constraints on the system, requiring it to ad-
here to certain symmetries or closure approximations through
self-consistent rules. The intent is to enable a low-order ap-
proximation to incorporate information that is either higher
order in perturbation theory or even beyond the reach of
perturbation theory. For example, in some implementations
of the self-consistent approximation, a perturbation theory is
developed, and then an ad hoc condition is imposed that the
coefficient of the second-order term in the expansion is forced
to be zero, which in turn causes the zeroth-order solution to
be determined in a way that can even be nonanalytic in a cou-
pling parameter. Such self-consistent expansions can also be
thought of as variational methods because they can be justified
as implementing some sort of principle of minimum sensi-
tivity [55–57] or even a form of the renormalization group,
where one endeavors to improve renormalized perturbation
theory by minimizing the dependence on the renormalization
scale [20]. Another recent approach is “iterative perturbation
theory” [58], where the partitioning of the Hamiltonian strat-
egy is carried out and examined at high order.

Perhaps the earliest example of this sort of strategy is the
operator transformation that was used by Bogoliubov in his
theory of the weakly interacting Bose gas [54,59,60]. Here,
the expansion of the Hamiltonian in terms of the strength
of the scattering between Bosons leads to anomalous terms
at second order that cannot be easily interpreted; but setting
their coefficient to zero leads to a unique determination of the
zeroth-order term in the expansion. The resulting excitation
spectrum is a collective outcome of the real interacting Bosons
in terms of noninteracting quasiparticles (in reality higher-
order terms lead to weak interactions and finite lifetimes to
these quasiparticles [59]). This description predicts that the
ideal Boson condensate at zero temperature is depleted due to
the residual interactions in a way that is nonanalytic in terms
of the interaction strength. Such a result could not be obtained

by a pure perturbation calculation, which would by necessity
lead to an analytic formula.

These methods, due to their variational nature, are gener-
ally more straightforward in terms of calculation. However,
they can be less transparent in the construction of the prob-
lem. In this paper, we focus on the self-consistent expansion
(SCE) method, which integrates perturbation theory with
the idea of self-consistency. This combination leverages the
practical implementation and interpretability of perturbation
theory and the variational flexibility of self-consistency con-
straints. Within the framework of perturbation theory, the
fundamental concept of the SCE method involves introduc-
ing variational parameters to repartition the unperturbed and
perturbed components of a system. These parameters are then
optimized to ensure that the adjusted perturbation theory re-
mains “self-consistent” at the targeted order of approximation.
Typically, the self-consistent criterion, or optimization condi-
tion, involves selecting a key physical quantity of interest and
ensuring that its next-order correction vanishes under the new
perturbation theory.

A remarkably simple form of the SCE method was devel-
oped by Edwards and Singh in 1979 as a “rapid and accurate”
approach to tackle the self-avoiding random walk problem
in polymers [61]; we will briefly review this work in the
next section. More recently, the SCE method and related
methods have been extended to singular physics problems
such as the Stark effect [36], quantum anharmonic oscilla-
tor [36,62], and the Kardar-Parisi-Zhang model of interface
growth [48,49,51,62,63], as well as to mathematical problems
such as asymptotic expansions of special functions [53,62]
and turbulence modeling [64].

The purpose of this paper is to extend the scope of the
SCE to deterministic, spatially extended dynamical systems
with anomalous dimensions. As a first step, we show how
SCE methods can improve the RG result of time-dependent
singular perturbation problems, using, as an example, flow
in porous media governed by Barenblatt’s equation [23].
Methodology-wise, the SCE method has been primarily ap-
plied to problems expressible in an integral form, where the
action is simply a linear sum of the unperturbed part and the
perturbation term, facilitating a straightforward repartitioning
step. This framework makes the application of SCE very
similar to a standard field theory calculation of perturbation
theory. Schwartz and Katzav have shown how to apply SCE
to stochastic nonlinear field theory using the Fokker-Planck
equation [53,62]. Here, we provide a field-theoretic frame-
work for the deterministic dynamical model of Barenblatt’s
using the Martin-Siggia-Rose (MSR) formalism [65] and ap-
ply SCE to this alternative form as well. We remark that the
MSR technique has previously been used to formulate an
action for Barenblatt’s equation, enabling the use of exact RG
to obtain the known asymptotic result perturbatively [66].

Our paper is structured as follows. Section II is a brief
review of the SCE procedure to solve the problem of
a single polymer chain in solutions with excluded vol-
ume. Section III introduces Barenblatt’s equation describing
groundwater spreading in a porous medium as the physical
problem to which we will apply the SCE method. We re-
view how the usual perturbation theory leads to a divergent
expansion and how perturbative RG identifies the correct
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self-similar form. In Sec. IV, we show that SCE improves
results from perturbative RG, particularly in the large per-
turbation regime. While all the calculations above are within
the conventional framework of solving PDEs with Green’s
functions, we shift our focus in Sec. V to transforming the
dynamical system problem into a field-theoretic form using
the MSR formalism. We show that equivalent RG and SCE
results can be achieved in a field-theoretic context, broadening
the applicability of these methods. Finally in Sec. VI, we dis-
cuss potential avenues for future work, including extensions
of SCE to other problems and computational frameworks.

II. REVIEW OF THE SCE CALCULATION
FOR POLYMER PROBLEM

In this section, we briefly review the instructive SCE cal-
culation for the polymer self-avoiding walk [61]. A polymer
chain is modeled as a continuous path that avoids itself due to
the excluded volume effect, and its statistical properties can
be studied using the Edwards measure [67]:

ρ[r(s)] = e− 3
2l

∫ L
0 ṙ2(s)ds−ω

∫ L
0

∫ L
0 δ[r(s)−r(s′ )]dsds′

≡ e−S0(l )−Sω , (1)

where L is the total length of a polymer chain, composed of
N segments of step length l , s is the arc length, r is the spatial
coordinate, and ω is the strength of the interaction potential.
This measure can be interpreted as a perturbation theory in a
path integral form, where the zeroth-order system is described
by the Wiener measure of an ordinary random walk, and the
self-exclusion interaction serves as a perturbation. Strictly
speaking, the delta-function self-interaction in the path in-
tegral is a pseudopotential in the same spirit as the pseudo
potential used in Bogoliubov’s theory of the weaklyinteracting
Bose gas [54,60]. The Edwards-Singh approach has been ex-
tended for general potentials [68], although it is not clear to us
whether the calculation as presented is applicable beyond the
pseudo-potential approximation. This may be relevant for the
puzzling technical results reported when Coulomb potentials
are used (see Discussion Sec. 1 of Ref. [68]).

To quantify the average size of polymer chains, we want to
calculate the moment of the end-to-end distance, denoted by
R, in the framework of the Edwards model

〈R2〉 =
∫

Dr[r(L) − r(0)]2ρ[r]∫
Dr ρ[r]

. (2)

Here, the self-excluding interaction as a strong coupling
makes a regular perturbation expansion divergent, which can
be resummed using the RG method [69,70]. Edwards and
Singh, however, took a different approach: they reorganized
the action by introducing a variational length scale l1 such that
〈R2〉 = Ll1:

ρ[r] = exp {−S0(l1) − [S0(l ) − S0(l1) + Sω]}, (3)

where the rescaled unperturbed term is S0(l1) and the new per-
turbation is S′ ≡ [S0(l ) − S0(l1) + Sω]. The physical meaning
of l1 is that it is an effective or renormalized step length for a
fictitious ideal Brownian chain, which takes into account the
interactions. Thus, in the same way that a weakly interacting

Bose gas can be represented as a gas of effective noninter-
acting Bosons, i.e., quasiparticles whose dispersion relation
reflects the actual interactions between the Bose gas atoms,
and thus is not that of ideal Bosons, the interacting polymer
chain is represented as an effective noninteracting Brownian
chain but with a renormalized step length that depends on the
interactions.

Next, they conduct a standard perturbation expansion
based on the new perturbation theory:

〈R2〉 =
∫

Dr[r(L) − r(0)]2 exp [−S0(l1)][1 − S′ + (h.o.t.)]∫
Dr exp [−S0(l1)][1 − S′ + (h.o.t.)]

.

(4)

The self-consistent criterion here is to set the first-order cor-
rection to 〈R2〉 to zero, and therefore determine the l1:

Ll2
1

(
1

l
− 1

l1

)
= C0ω

L3/2

l1/2
1

, (5)

where the constant C0 = 2
√

6
π3 . There are two asymptotic

regimes for l1. First, there is a regime where perturbation
theory (PT) is adequate, and second, there is a strong in-
teraction regime where the effective step length is strongly
renormalized by the interactions

l1 =
{

l + C0ωL1/2l−1/2, l1 ≈ l (PT regime)

(C0ωl )2/5L1/5, l1 � l
. (6)

The latter regime l1 � l corresponds to the asymptotic limit
L → ∞. Therefore,

〈R2〉 = Ll1 = (C0ωl )2/5L6/5 ∝ L6/5, as L → ∞. (7)

This short calculation yielded remarkably accurate results for
the anomalous dimension, recovering the Flory exponent α =
6/5. This is known to be a very good approximation to other
results obtained by RG or numerical simulation: 〈R2〉 ∝ Lα ,
where α = 1.195 [69] and the numerical result α = 2μ,μ =
0.58759700(40) [71].

We introduce this example because it has many analogies
to the approach we will take in this paper to the problem of
anomalous dimensions in partial differential equations. The
self-avoiding walk for an isolated polymer chain in solution
was originally formulated as a path integral, and then mapped
into a partial differential equation framework by Edwards
[67,72,73], using a self-consistent field closure. In this ap-
proach, the arc length coordinate along the polymer chain is
equivalent to time, whereas the position of the polymer is the
space coordinate, and the equation for the propagator of the
polymer chain obeys a Green function equation, something
analogous to the Schwinger-Dyson equation in quantum field
theory. This narrative reveals a clear parallel to the core sub-
ject of this paper, Barenblatt’s equation [20–25], but working
backward. Specifically, we consider a partial differential equa-
tion, whose solution was originally formulated directly using
Green’s functions and an integral equation [20,24,25] and
solved using perturbative RG, but which in the present paper,
we formulate in terms of a path integral framework. In both
these formulations, we apply the self-consistent expansion in
conjunction with RG and show the equivalence of the results.
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III. BARENBLATT’S EQUATION: A SINGULAR
PERTURBATION PROBLEM

Barenblatt proposed a nonlinear diffusion equation that
models the flow of groundwater in an elastoplastic porous
medium (i.e., a sponge!) [23]:

∂t u = κ

2
[1 + ε 
(−∂t u)]∂2

x u

u(x, 0) ≡ v0(x) = Q0√
2π l2

exp

(
− x2

2l2

)
. (8)

A formal solution through the Green’s function method
yields a Volterra integrodifferential equation that can be
solved iteratively:

u(x, t ) =
∫
R

dy G0(x, y; t, 0) v0(y)

+ εκ

2

∫ t

0
ds

∫ Xε

−Xε

dy G0(x, y; t, s) ∂2
y u(y, s), (9)

where the integral limit Xε (t ) is given by

∂t u(x, t ) = 0
∣∣
|x|=Xε (t ), (10)

and G0 is the usual Green’s function for diffusion equation

G0(x, y; t, s) = 1√
2πκ (t − s)

exp

[
− (x − y)2

2κ (t − s)

]
. (11)

The presence of u(x, t ) on both sides of Eq. (9) makes this
a challenging mathematical problem to solve analytically,
although in this particular case, it is possible to relate the solu-
tions to special functions [22] by making the ansatz that there
are anomalous scaling exponents due to incomplete similarity
[21,23]. A brute force attack on the problem is possible using
perturbation theory in the small parameter ε limit, where the
zeroth-order system is the linear diffusion, and the discontinu-
ity in the diffusion coefficient gives the perturbation term from
which an RG calculation yields a perturbation expansion in ε

for the anomalous dimensions [20,24,25]. This approach is of
course purely formal but has been made rigorous [74,75] in-
cluding results on the existence and behavior of the anomalous
dimensions as a function of ε [74].

A. Divergence of the usual perturbation theory

In the usual perturbation theory, we expand the solution
around a small parameter ε,

u(x, t ) = u0(x, t ) + ε u1(x, t ) + · · ·
Xε (t ) = X0(t ) + εX1(t ) + · · · , (12)

and plug the expansions back into Eq. (9) to obtain

u(x, t ) =
∫
R

dy G0(x, y; t, 0) v0(y) + εκ

2

∫ t

0
ds

×
∫ X0

−X0

dy G0(x, y; t, s) ∂2
y u0(y, s) + O(ε2). (13)

Solving to order ε, we obtain the zeroth-order solution and the
first-order correction

u0(x, t ) =
∫
R

dy G0(x, y; t, 0) v0(y) = Q0 e−x2/[2(κt+l2 )]√
2π (κt + l2)

u1(x, t ) = − 1√
2πe

ln

(
κt + l2

l2

)
u0 + (r.t.), (14)

where “r.t.” represents “regular terms.” In the limit κt
l2 → ∞,

u(x, t ) ∼ Q0 e−x2/(2κt )

√
2πκt

[
1 − ε√

2πe
ln

(
κt

l2

)]

+ ε · (r.t.) + O(ε2), (15)

where the first-order term contains a logarithmic divergence,
breaking the self-similarity at long times, showing that the
solution retains a long-time memory of the initial condition.
However, this secular term is an artifact of the naive per-
turbation theory because a bounded solution to the Cauchy
problem exists [23,74,76]. In short, with its unusual feature of
a discontinuous diffusion coefficient (as a function of whether
or not u is increasing or decreasing) Barenblatt’s equation may
be regarded as a singular perturbation problem and we need
new methods to find the correct asymptotic form.

B. The origin of divergence

To find the origin of the logarithmic divergence in perturba-
tion theory, we first perform dimensional analysis, a powerful
tool to analyze the behaviors of a physical system with scaling
laws and self-similarity. In this problem, we have physical
quantities with the following units:

[Q0] = M, [u] = M/L, [x] = [l] = L, [t] = T,

[κ] = L2T −1, [ε] = 1. (16)

We construct the corresponding dimensionless quantities and
rewrite the solution in terms of dimensionless quantities:

� =
√

κt

Q0
u, �1 = x√

κt
, �2 = l√

κt
, �3 = ε, (17)

� = f (�1,�2,�3) ⇒ u = Q0√
κt

f

(
x√
κt

,
l√
κt

, ε

)
,

(18)

where the perturbation expansion of the dimensionless func-
tion f around ε is secular at the limit �2 = κt

l2 → ∞. This
singularity is precisely the origin of the logarithmic diver-
gence in the naive perturbation theory. While this breaks the
self-similarity deduced from dimensional analysis (namely
intermediate asymptotics of the first kind), Barenblatt’s equa-
tion retains a nontrivial form of self-similarity, categorized
as intermediate asymptotics of the second kind arising from
incomplete similarity in the limit �2 = κt

l2 → ∞ [20,21,23].

C. Self-similar solution at the long-time asymptotic regime

The asymptotic regime of concern is κt
l2 → ∞, which can

be achieved equivalently by taking the limit of long time t with
finite l , or by fixing the time t and taking l → 0. We choose
the latter procedure in the rest of this calculation, but all the
methods are of course applicable to the former one.
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To renormalize the perturbation theory, we introduce an
arbitrary finite length scale μ where [μ] = L and therefore
the quantity μ√

κt
remains finite. We define the renormalized

function F and the renormalization factor Z , and choose Z to
eliminate the leading order of divergence

F

(
x√
κt

,
μ√
κt

, ε

)
= Z

(
l

μ

)
· f

(
x√
κt

,
l√
κt

, ε

)
. (19)

Because the bare function f is independent of the arbitrary
length scale μ, we obtain the RG equation

μ
df

dμ
= 0 ⇒ μ

d (Z−1F )

dμ
= 0 (20)

⇒
[
−d ln Z

d ln μ
+ σ

∂

∂σ

]
F = 0, (21)

where σ ≡ μ√
κt

, and the last equation is reminiscent of the
Callan-Symanzik equation in quantum field theory [16,77,78].
Later in this paper, we will show that this is no accident: It
is precisely the Callan-Symanzik equation when expressed in
the field-theoretic framework [16,20,77,78].

In the limit l → 0, we impose the renormalizability as-
sumption

lim
l→0

d ln Z (l/μ)

d ln μ
= dimensionless constant ≡ 2α, (22)

and solve Eq. (20) to find the self-similar form

u = Q0√
κt

(
l√
κt

)2α

ϕ

(
x√
κt

, ε

)
∝ t− 1

2 −α ϕ

(
x√
κt

, ε

)
.

(23)

In summary, requiring there to be a self-similar solution
at long time for the renormalized perturbation theory means
that the solution must involve an anomalous dimension which
enters in the form of Eq. (23). In Sec. IV, we will combine this
constraint with the self-consistent expansion to generate an
approximation that cannot be obtained by either the original
RG method or the self-consistent expansion method alone.

D. Perturbative RG

The RG equation gives a self-similar solution in the asymp-
totic regime l → 0, but the value of the anomalous dimension
α is unknown. A perturbative RG calculation [24,25] (re-
viewed in pedagogical detail in Chapter 10 of Goldenfeld’s
textbook [20]) approximates α by renormalizing Q in the per-
turbation expansion. Here, we omit the calculation details but
give the final results directly. The final result of the first-order
perturbative RG is, as κt

l2 → ∞,

u(x, t ) ∼ Q0√
2πκt

(
κt

l2

)−α

exp

(
− x2

2κt

)
+ O(ε2), (24)

where the anomalous dimension is α = ε√
2πe

+ O(ε2). Exten-
sion of these results to higher order was achieved by Cole et al.
[1] who used a Lie group method to obtain

α(ε) = ε√
2πe

− 0.063546 ε2 + O(ε3), (25)

a result also obtained by Yoshida et al. using the so-called
exact renormalization group method.

While these methods provide highly accurate perturbative
approximations of the asymptotics, they involve complex and
lengthy mathematical derivations.

IV. APPLICATION OF SELF-CONSISTENT EXPANSION
TO BARENBLATT’S EQUATION

In this section, we will apply the SCE method to Baren-
blatt’s equation to find the long-time asymptotics and compare
the results to those from other methods.

A. SCE in PDE framework

We start with Eq. (9), an integrodifferential equation de-
rived in the PDE framework using Green’s function method.
The first step is to rescale the zeroth-order system to obtain a
new perturbation theory. In ordinary perturbation theory, the
zeroth-order equation is

u0 = Q0√
2π (κt + l2)

exp

[
− x2

2(κt + l2)

]

∼ Q0√
2πκt

exp

(
− x2

2κt

)
, as

κt

l2
→ ∞, (26)

which is of the self-similar form Eq. (23) when ε = 0, result-
ing in α = 0.

To proceed, we use the solution Eq. (23) of the Callan-
Symanzik equation (20) with α �= 0 to construct the perturba-
tion theory for long times. We can further simplify Eq. (23)
by expanding the function ϕ, which is regular in the limit of
κt
l2 → ∞, with respect to ε and keep only the leading order
in ε:

u ∼ Q0√
κt

(
l√
κt

)2α[
ϕ0

(
x√
κt

)
+ O(ε)

]

∼ Q0√
2πκt

(
l√
κt

)2α

exp

(
− x2

2κt

)
. (27)

When α = 0 the long-time asymptotics of the self-similar
solution aligns with the long-time asymptotics of the original
zeroth-order system, so we choose it as the zeroth-order sys-
tem in the new perturbation theory. To match with the initial
condition at t = 0 and the boundary condition at ε = 0, we
write the self-consistent solution in the following form:

uα = Q0√
2π (κt + l2)

(
l√

κt + l2

)2α

exp

[
− x2

2(κt + l2)

]
,

(28)

where α represents a variational parameter to be determined
by a self-consistent criterion, and may depend on other phys-
ical quantities in the problem. Here, α can be a function of ε

and must satisfy α(ε = 0) = 0 as a boundary condition.
Now, we construct a new perturbation theory where we

repartition Eq. (9) with the new unperturbed term uα and
define the corresponding new perturbation term (PT) uI

α:

u(x, t ) = u0 + uI
ε (old PT)

= uα + (−uα + u0 + uI
ε

)
≡ uα + uI

α (new PT), (29)
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where the new perturbation term is

uI
α ≡ −uα + u0 + εκ

2

∫ t

0
ds

∫ Xε

−Xε

dy G0(x, y; t, s) ∂2
y u(y, s)

≡ u(1)
α + u(2)

α + · · · . (30)

The leading-order correction becomes

u(1)
α = − uα + u0

+ εκ

2

∫ t

0
ds

∫ Xα (s)

−Xα (s)
dy G0(x, y; t, s) ∂2

y uα (y, s), (31)

where Xα (t ) =
√

(1 + 2α)(κt + l2) should be solved from

∂t uα (x, t ) = 0
∣∣
|x|=Xα (t ). (32)

Next, we impose the self-consistent criterion at first order
in the SCE to solve for α. Here, we choose the total mass
m(t ) = ∫

R dx u(x, t ) as the quantity of physical significance

to establish this criterion, which means its first-order correc-
tion should vanish under our new perturbation theory. This
is because, at the current order, the essential physics we are
trying to capture is the adiabatic loss of mass over time. When
ε = 0, mass is conserved, i.e., m0(t ) = Q0; when ε > 0, we
find at the asymptotic limit κt

l2 → ∞, the dominant contri-
bution of the perturbation to u(x, t ) is the renormalization
factor (l/

√
κt + l2)2α , which is independent of position x.

Therefore, using the total mass m should be a natural choice
for estimating α. Under the new perturbation theory, we find
the perturbative expansion of the total mass

m(t ) =
∫
R

dx u(x, t ) =
∫
R

dx
[
uα + u(1)

α + u(2)
α + · · · ],

(33)

and the self-consistent criterion sets

0
SCE≡

∫
R

dx u(1)
α =

∫
R

dx

[
−uα + u0 + εκ

2

∫ t

0
ds

∫ Xα (s)

−Xα (s)
dy G0(x, y; t, s) ∂2

y uα (y, s)

]
(34)

= Q0

[
1 −

(
l√

κt + l2

)2α
]

+ εκ

2

∫ t

0
ds

∫ √
(1+2α)(κs+l2 )

−
√

(1+2α)(κs+l2 )
dy

Q0l2α

√
2π (κs + l2)

3
2 +α

(
y2

κs + l2
− 1

)
e− y2

2(κs+l2 )

= Q0

[
1 −

(
l√

κt + l2

)2α
]

+ ε Q0

2
√

2π

(
− 1

α

)[(
l√

κt + l2

)2α

− 1

]
(−2

√
1 + 2α e− 1

2 −α ), (35)

where the condition α �= 0 is used in the time integral to yield
a nontrivial result; when α = 0, it leads to a logarithmic func-
tion in time, rather than the power law derived above. Recall
that α = 0 corresponds to the unperturbed case (ε = 0), so
the calculation above reveals the exact origin of the logarith-
mic divergence in perturbation theory, where the unperturbed
solution u0 is integrated over in the first-order calculation.
We collect terms and find the self-consistent parameter α is
determined by the following equation:

[
1 −

(
l√

κt + l2

)2α
](

1 − ε√
2πe

√
1 + 2α

α
e−α

)
= 0

⇒ α = ε√
2πe

√
1 + 2α e−α, (36)

which we solve numerically, with the results illustrated by the
red dashed line in Fig. 1. We emphasize that in obtaining
Eq. (36), we had to use both the Callan-Symanzik equa-
tion (20) from renormalization group and the self-consistent
expansion. We have not been able to obtain this result from
either the RG or SCE methods alone. Note the SCE method
at the first order yields the same results as an iterative method
[79] because we apply SCE directly to the integrodifferential
equation (9), which is also the self-referential formal solution
of the targeted quantity u(x, t ). In Sec. V, we will introduce
a new framework as an effort to separate the local interaction
(e.g., a Hamiltonian) and the targeted physical quantity.

B. Comparison of methods

We compare our value of α obtained from the SCE method
to the results of RG and the exact solution. Starting with
the self-similar form, the exact values of the anomalous
dimension α(ε) and the factor ξε can be found by solving the

FIG. 1. Estimates of the anomalous dimension α as a function
of the perturbation strength ε as calculated by renormalization group
(first and second order in ε), the self-consistent expansion at lowest
order, and the exact value by solving Eqs. (37) and (38) using a
shooting method.
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following transcendental equations [20,23]:

D2α+2(ξε ) = 0, (37)

F (−α − 1, 1/2, ξ 2
ε /2(1 + ε)) = 0, (38)

where Dν (z) is the parabolic cylinder function and F (a, b, z)
is the confluent hypergeometric function [80].

Depicted in Fig. 1, we now compare the estimation of α(ε)
from the first-order SCE calculation [Sec. IV A], first and
second RG calculations [1,25,66], against the exact results of
Eqs. (37) and (38).

In the regime of ε � 1, all methods yield accurate esti-
mations; for large ε, the SCE method significantly improves
the RG results, in particular avoiding the decrease in the
anomalous dimension for ε > 2 obtained by the second or-
der in ε RG calculation. This finding again demonstrates the
effectiveness of self-consistent methods for large perturba-
tion problems, indicating their potential in strongly correlated
physical systems.

V. RG AND SCE IN FIELD-THEORETIC FRAMEWORK

Recently, the SCE method had success in approximating
Hamiltonian quantum mechanics and integral representations
of special functions [62]. This problem, together with the
single polymer chain executing a self-avoiding walk reviewed
in Sec. II is akin to a zero-dimensional field theory and can
be presented in an integral form for the partition function or
generating function

Z (x) ≡
∫

ds e−H (x,s) =
∫

ds e−H0(x,s)−εHI (x,s), (39)

where H0 is meant to represent the noninteracting problem
and HI represents the interaction term. We will be expanding
on the value of s where H0 has an extremum, representing a
saddle point of the integral. In the presence of HI , the exact
saddle point will, of course, move. To implement the SCE
approach, we will seek the best effective H0 by introducing
a new variational parameter η to rescale H0 at its maxima,
obtaining a new perturbation theory

Z (x) =
∫

ds e−Hη (x,s)−[−Hη (x,s)+H0(x,s)+εHI (x,s)], (40)

where the square brackets will be denoted as δH , and are
treated as a perturbation about the effective noninteracting
Hamiltonian Hη. Next, we choose a self-consistent criterion,
which states that the higher-order correction of an observable
of significance, which we will call ĝ should vanish. For ex-
ample, in the case of the single polymer reviewed earlier, the
root mean square end-to-end distance or radius of gyration

was chosen. Then, the expectation value of ĝ will be

g(x) ≡ 〈ĝ(x, s)〉 = 1

Z

∫
ds ĝe−H (x,s) (41)

≈ 1

Zη

∫
ds ĝ e−Hη (x,s)[1 − δH + O(δH2)], (42)

where the partition function Z has been expanded as

Z (x) =
∫

ds e−Hη (x,s)−[−Hη (x,s)+H0(x,s)+εHI (x,s)] (43)

= Zη(1 + O(δH )). (44)

Note that the partition function Z has also been expanded in
powers of δH . The choice of Hη will be determined by the
condition that in g(x)the terms of order δH vanish.

All of this is straightforward conceptually when one is
dealing with a partition function or generating function in a
statistical field theory. But what happens when we are faced
with a strong coupling dynamical system in the form of a
PDE? This is the question addressed in the next section.

A. From dynamical systems to field theory—the MSR formalism

For a dynamical systems problem, usually formulated in
terms of differential equations, how can we find a system-
atic way to apply SCE? If the differential equations have
a closed-form integral solution, the answer would be intu-
itive. But in most cases, how to apply the SCE method, i.e.,
where to insert the variational parameter and how to choose
an appropriate self-consistent criterion, is nontrivial. In order
to make progress, we use the fact that it is possible to ex-
press the solution of a differential equation—a deterministic
function—as the limit of a probability distribution. Thus, our
strategy is to convert the differential equation to a field the-
ory using the so-called Martin-Siggia-Rose (MSR) formalism
[65,81–83], where the solution to differential equations be-
comes an expectation over a fluctuating field. For Barenblatt’s
equation, this strategy was first implemented by Yoshida [66],
who used the so-called exact or functional renormalization
group to calculate the anomalous dimension to second order
in ε.

We introduce a random field φ(x, t ) whose distribution
peaks at the solution u(x, t )

u(x, t ) =
∫

D[φ] φ(x, t ) δ[u − φ]. (45)

Then we rewrite the delta-functional constraint to ensure that
the function φ(x, t ) is a solution of Barenblatt’s equation (8)
including the initial condition, and expand the delta-functional
in the exponential representation, as a functional integral over
an auxiliary field φ̃, obtaining

u(x, t ) =
∫

D[φ] φ δ

[
∂tφ − κ

2
[1 + ε 
(−∂tφ)]∂2

x φ − δ(t )v0(x)

]

=
∫

D[φ, φ̃] φ exp

{
−

∫
dyds φ̃

[
∂s − κ

2
[1 + ε 
(−∂sφ)]∂2

y

]
φ +

∫
dyds δ(s)v0(y)φ̃

}
. (46)
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The last line of Eq. (46) suggests that we define the generating functional Z[J, J̃] for the field φ and the associated action S[φ, φ̃]
as

Z[J, J̃] ≡
∫

D[φ, φ̃] e−S[φ,φ̃]+∫
dyds (Jφ̃+J̃φ), (47)

S[φ, φ̃] ≡ −
∫

dyds φ̃

[
∂s − κ

2
[1 + ε 
(−∂sφ)]∂2

y

]
φ, (48)

and thus u(x, t ) can be expressed as the expectation value of the field

u(x, t ) = 〈φ(x, t )〉 = 1

Z

δZ

δJ̃

∣∣∣∣
J̃=0,J=δ(t )v0(x)

. (49)

This succinct reformulation of Barenblatt’s equation within a field-theoretic framework allows us to proceed with standard field
theory calculations, including RG, SCE or both.

B. Perturbation theory using generating functionals and Feynman diagrams

Following Eq. (49), we first work out the usual perturbation theory in this framework using the generating functional method
[84]. For clarity, we write down the explicit expressions for the action and the generating functional:

S[φ, φ̃] ≡ S0[φ, φ̃] + Sε[φ, φ̃] =
∫

dyds φ̃
(
∂s − κ

2
∂2

y

)
φ +

∫
dyds φ̃

[
− εκ

2

(−∂sφ)∂2

y

]
φ, (50)

Z0[J, J̃] ≡
∫

D[φ, φ̃] e−S0+
∫

dyds (Jφ̃+J̃φ) = A0 exp

{∫
dxdt

∫
dyds J̃ (x, t )�0(x, t ; y, s)J (y, s)

}
, (51)

Z[J, J̃] =
∫

D[φ, φ̃] e−S0−Sε+
∫

dyds (Jφ̃+J̃φ) = exp

{
−Sε

[
δ

δJ̃
,

δ

δJ

]}
Z0[J, J̃], (52)

where A0 is a constant factor and �0(x, t ; y, s) = e− (x−y)2

2κ (t−s) /
√

2πκ (t − s) is the propagator for the zeroth-order system.
At first order in ε, we calculate the perturbation expansion for Z[J, J̃] and evaluate at appropriate choice for the external fields

J and J̃

Z[J, J̃] =
{

1 − Sε

[
δ

δJ̃
,

δ

δJ

]}
Z0[J, J̃]

= A0

{
1 + εκ

2

∫ t

0
ds

∫ X0

−X0

dy
δ

δJ (y, s)
∂2

y

δ

δJ̃ (y, s)

}
exp

{∫
dy1ds1dy2ds2 J̃ (y1, s1)�0(y1, s1; y2, s2)J (y2, s2)

}

= A0

{
1 + εκ

2

∫ t

0
ds

∫ X0

−X0

dy

[∫
d2 ∂2

y �0(y, s; 2)J (2)
∫

d1 J̃ (1)�0(1; y, s) + ∂2
y �0(y, s; y2, s2)

∣∣
y2=y,s2=s

]}
e
∫

J̃�0J

× J̃=0−−−−−−→
J=δ(t )v0(x)

A0

{
1 + εκ

2

∫ t

0
ds

∫ X0

−X0

dy ∂2
y �0(y, s; y2, s2)

∣∣
y2=y,s2=s

}
, (53)

where we use “dn” as an abbreviation for “dyndsn.” Similarly for the functional derivative

δZ

δJ̃ (x, t )
= Z

∫
d2 �0(x, t ; 2)J (2) + A0

εκ

2

∫ t

0
ds

∫ X0

−X0

dy
∫

d2 ∂2
y �0(y, s; 2)J (2)�0(x, t ; y, s)e

∫
J̃�0J

× J̃=0−−−−−−→
J=δ(t )v0(x)

A0

{
u0 + εκ

2

∫ t

0
ds

∫ X0

−X0

dy
[
u0(x, t )∂2

y �0(y, s; y2, s2)
∣∣
y2=y,s2=s

+ ∂2
y u0(y, s)�0(x, t ; y, s)

]}
. (54)

Utilizing the cancellation of vacuum diagrams, we find the first-order expansion of the required quantity u(x, t ) to be

u(x, t ) =
u0 + εκ

2

∫ t
0 ds

∫ X0

−X0
dy

[
u0(x, t )∂2

y �0(y, s; y2, s2)
∣∣
y2=y,s2=s

+ ∂2
y u0(y, s)�0(x, t ; y, s)

] + O(ε2)

1 + ε
2

∫ t
0 ds

∫ X0

−X0
dy ∂2

y �0(y, s; y2, s2)
∣∣
y2=y,s2=s

+ O(ε2)

= u0 + εκ

2

∫ t

0
ds

∫ X0

−X0

dy ∂2
y u0(y, s)�0(x, t ; y, s) + O(ε2). (55)

Notice that we have recovered Eq. (13) in the PDE framework, with the same logarithmic divergence at the first order.
Similarly, we can renormalize this divergence in the field theory framework.

014145-8



SELF-CONSISTENT EXPANSION AND FIELD-THEORETIC … PHYSICAL REVIEW E 111, 014145 (2025)

C. The Callan-Symanzik equation

The initial width l effectively serves as a cutoff, and
our goal is to eliminate the divergence in 〈φ(x, t )〉 in the
limit l → 0. Define G(1)(x, t ; ε, l ) ≡ 〈φ(x, t )〉. We impose
wave function renormalization with an arbitrary finite length
scale μ:

G(1)
R (x, t ; ε, μ) = Zφ (ε, μ, l ) G(1)(x, t ; ε, l )

⇒ φR = Zφ φ, φ̃R = Z−1
φ φ̃. (56)

The bare quantity G(1) is independent of the arbitrary
length scale μ, and therefore for any fixed l

0 = μ
d

dμ
G(1)(x, t ; ε, l )

= μ
d

dμ

[
Z−1

φ (ε, μ, l ) G(1)
R (x, t ; ε, μ)

]
, (57)

which we solve to obtain the Callan-Symanzik equation

[
−d ln Zφ

d ln μ
+ μ

∂

∂μ

]
G(1)

R = 0. (58)

Again, we impose the renormalizability assumption

lim
l→0

d ln Zφ

d ln μ
= dimensionless constant ≡ 2α

⇒ Zφ =
(μ

l

)2α

. (59)

We note the steps outlined above closely parallel the renor-
malization procedure in Sec. III C, as we promised earlier.

D. Perturbative RG

Recall that perturbative RG addresses divergences by
resumming the perturbative solution, given a set of renor-
malization assumptions. Since both the perturbative solution
Eq. (55) and the renormalization assumption Eq. (58) are iden-
tical to those discussed in the PDE framework in Sec. III D,
the ensuing calculation is also exactly the same, and need not
be repeated.

E. SCE

To apply SCE in this field-theoretic framework, we first
construct the new perturbation theory starting with redefining
the zeroth-order system. When ε = 0, we have

Z0[J, J̃ = 0] = D[φ, φ̃] e−S0+
∫

dyds Jφ̃

=
∫

D[φ, φ̃] e− ∫
dyds(φ̃�−1

0 φ−Jφ̃), (60)

u0(x, t ) =
∫

dyds �0(x, t ; y, s)J (y, s), (61)

where J (x, t ) = δ(t ) Q0√
2π l2

exp(− x2

2l2 ). Notice that we have two
unperturbed terms to rescale, but they only appear in a multi-
plicative form in u0 so we can choose one. Here, we choose
J (x, t ) to show the calculation.

We want the form of the self-consistent solution to be
similar to the unperturbed case, so we replace the con-
stant Q0 with a free parameter Qα , and define Jα (x, t ) =
δ(t ) Qα√

2π l2
exp(− x2

2l2 ) such that when ε > 0,

uα (x, t ) =
∫

dyds �0(x, t ; y, s)Jα (y, s) + (h.o.t.), (62)

is an asymptotic solution. Therefore, the generating functional
for the new zeroth-order system is

Zα[J, J̃] ≡
∫

D[φ, φ̃] e−S0+
∫

dyds (Jαφ̃+J̃φ)

= A0 exp

{∫
dxdt

∫
dyds J̃ (x, t )�0(x, t ; y, s)Jα (y, s)

}
. (63)

Using the rescaled generating functional, we construct the new perturbation theory

Z[J, J̃] =
∫

D[φ, φ̃] e−S0−Sε+
∫

(J−Jα )φ̃+∫
(Jαφ̃+J̃φ) = exp

{
−Sε

[
δ

δJ̃
,

δ

δJα

]
+

∫
(J − Jα )

δ

δJα

}
Zα[J, J̃]. (64)

To first order, we calculate the new perturbation expansion

Z[J, J̃] =
{

1 − Sε

[
δ

δJ̃
,

δ

δJα

]
+

∫
(J − Jα )

δ

δJα

}
Zα[J, J̃]

= A0

{
1 + εκ

2

∫ t

0
ds

∫ Xα

−Xα

dy

[∫
d2 ∂2

y �0(y, s; 2)Jα (2)
∫

d1 J̃ (1)�0(1; y, s) + ∂2
y �0(y, s; y2, s2)

∣∣
y2=y,s2=s

]}
e
∫

J̃�0Jα

× J̃=0−−→
Jα

A0

{
1 + εκ

2

∫ t

0
ds

∫ Xα

−Xα

dy ∂2
y �0(y, s; y2, s2)

∣∣
y2=y,s2=s

}
, (65)
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and similarly for the functional derivative

δZ

δJ̃ (x, t )
= Z

∫
d2 �0(x, t ; 2)Jα (2)+ A0

{
εκ

2

∫ t

0
ds

∫ Xα

−Xα

dy
∫

d2 ∂2
y �0(y, s; 2)Jα (2)�0(x, t ; y, s)

+
∫

dyds[J (y, s) − Jα (y, s)]�0(x, t ; y, s)

}
e
∫

J̃�0J

× J̃=0−−→
Jα

A0

{
uα + εκ

2

∫ t

0
ds

∫ Xα

−Xα

dy
[
uα (x, t )∂2

y �0(y, s; y2, s2)
∣∣
y2=y,s2=s

+ ∂2
y u0(y, s)�0(x, t ; y, s)

] + u0 − uα

}
. (66)

After the cancelation of the vacuum diagrams, we arrive at

u(x, t ) = uα + εκ

2

∫ t

0
ds

∫ Xα

−Xα

dy ∂2
y uα (y, s)�0(x, t ; y, s)

+ u0 − uα + (h.o.t.), (67)

where the first-order correction matches its counterpart in the
PDE framework (31) precisely

u(1)
α = − uα + u0

+ ε

2

∫ t

0
ds

∫ Xα (s)

−Xα (s)
dy �0(x, y; t, s) ∂2

y uα (y, s). (68)

Subsequent application of the self-consistent criterion follows
the established procedure in Sec. IV A, and therefore does not
need to be repeated here. In other words, the field-theoretic
formalism conveniently allows the RG and SCE methods to be
systematically carried out to an arbitrary order of perturbation
theory.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have extended the SCE method to study
a well-known dynamical problem, Barenblatt’s equation for
underground water spreading in a porous medium. We pre-
sented an analytical SCE calculation in two frameworks, a
PDE framework and a field-theoretic framework, establishing
their equivalence. Our calculation has two steps. The first is
to use general renormalization group considerations to obtain
a Callan-Symanzik equation that describes how anomalous
dimensions may arise in the equation. The second step is
to use an explicit SCE perturbation calculation constrained
by the Callan-Symanzik equation to derive the anomalous
dimension. Remarkably, even a rapid calculation at first order
allows our SCE method to provide an accurate estimation of
the anomalous dimension α(ε). Notably, in the regime of large
perturbations (large ε), our results improve upon the existing
RG results. We were not able to obtain these results using
either the RG or the SCE alone.

The original application of RG to Barenblatt’s equa-
tion presaged its eventual use for moving boundary problems
with self-similarity of the second kind in turbulence propa-
gation [26], traveling waves [85–87] and the full spectrum of
singular perturbation problems [29,30,88]. Although the RG
approximants for singular perturbation problems are remark-
ably accurate even when the supposedly small parameter ε =
O(1), there is still a need to be able to generate approximants
at even larger values. For example, in low Reynolds number
fluid dynamics, the problem of flow around a body leads to
extremely challenging asymptotics problems with boundary
layers that even RG approximations [30] have difficulty in
extending beyond Reynolds numbers of order unity. Thus,
it would be of great interest to develop improved singular
perturbation techniques for all these problems based on SCE.
Additionally, adapting SCE for numerical schemes is a com-
pelling direction, given the difficulties singular problems pose
for analytical approaches.

The potential scope of the SCE method extends beyond
physics. As more successful application examples emerge in
various problems, its rigorous mathematical foundations and
convergence theory are ripe for further exploration [62]. In
computational science, particularly within physics-informed
machine learning, the principle of self-consistency is becom-
ing increasingly relevant. Lin et al. introduced a deep learning
solver to solve the polymer self-consistent field theory equa-
tions [89]. Shen et al. combined the self-consistency in the
Fokker-Planck equation with neural networks to achieve con-
vergent solutions and facilitate efficient stochastic gradient
descent [90], and the approach was further generalized to
solve other PDEs [91]. It would be interesting to leverage the
SCE method within machine learning to tackle complex and
nonlinear physics dynamics, focusing on efficient computa-
tion, accuracy, and robust convergence, even in the presence
of singular perturbations.
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